Display options
Share it on

IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):588-595. doi: 10.1109/trpms.2020.3019954. Epub 2020 Aug 27.

A Clinically Driven Task-Based Comparison of Photon Counting and Conventional Energy Integrating CT for Soft Tissue, Vascular, and High-Resolution Tasks.

IEEE transactions on radiation and plasma medical sciences

Jayasai R Rajagopal, Pooyan Sahbaee, Faraz Farhadi, Justin B Solomon, Juan Carlos Ramirez-Giraldo, William F Pritchard, Bradford J Wood, Elizabeth C Jones, Ehsan Samei

Affiliations

  1. Carl E. Ravin Advanced Imaging Laboratories, and Medical Physics Graduate Program, Duke University, Durham, NC, 27705 USA.
  2. Siemens Medical Solutions USA, Malvern, PA, 19355 USA.
  3. Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892 USA.
  4. Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, and Department of Radiology, Duke University, Durham NC, 27705 USA.
  5. Center for Interventional Oncology, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda MD, 20892 USA.
  6. Center for Interventional Oncology, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892 USA.
  7. Carl. E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, and Departments of Electrical and Computer Engineering, Radiology, Biomedical Engineering, and Physics, Duke University, Durham, NC, 27705 USA.

PMID: 34250326 PMCID: PMC8269971 DOI: 10.1109/trpms.2020.3019954

Abstract

Photon-counting CT detectors are the next step in advancing CT system development and will replace the current energy integrating detectors (EID) in CT systems in the near future. In this context, the performance of PCCT was compared to EID CT for three clinically relevant tasks: abdominal soft tissue imaging, where differentiating low contrast features is important; vascular imaging, where iodine detectability is critical; and, high-resolution skeletal and lung imaging. A multi-tiered phantom was imaged on an investigational clinical PCCT system (Siemens Healthineers) across different doses using three imaging modes: macro and ultra-high resolution (UHR) PCCT modes and EID CT. Images were reconstructed using filtered backprojection and soft tissue (B30f), vascular (B46f), or high-resolution (B70f; U70f for UHR) kernels. Noise power spectra, task transfer functions, and detectability index were evaluated. For a soft tissue task, PCCT modes showed comparable noise and resolution with improved contrast-to-noise ratio. For a vascular task, PCCT modes showed lower noise and improved iodine detectability. For a high resolution task, macro mode showed lower noise and comparable resolution while UHR mode showed higher noise but improved spatial resolution for both air and bone. PCCT offers competitive advantages to EID CT for clinical tasks.

Keywords: clinical imaging systems; energy integrating detector; image quality; phantom; photodetector technology; photon-counting CT; task based

References

  1. AJR Am J Roentgenol. 2010 Jun;194(6):1559-67 - PubMed
  2. J Am Coll Radiol. 2019 May;16(5S):S264-S285 - PubMed
  3. Proc SPIE Int Soc Opt Eng. 2016 Feb;9783: - PubMed
  4. Opt Express. 2003 Mar 10;11(5):460-75 - PubMed
  5. Lung Cancer. 2014 Jun;84(3):236-41 - PubMed
  6. Invest Radiol. 2018 Jun;53(6):365-372 - PubMed
  7. J Gastrointest Oncol. 2015 Aug;6(4):375-88 - PubMed
  8. Med Phys. 2014 Jul;41(7):071909 - PubMed
  9. Invest Radiol. 2018 Mar;53(3):135-142 - PubMed
  10. Phys Med Biol. 2008 Aug 7;53(15):4031-47 - PubMed
  11. AJR Am J Roentgenol. 2006 Sep;187(3):789-93 - PubMed
  12. J Am Coll Cardiol. 2016 Apr 19;67(15):1759-1768 - PubMed
  13. Phys Med Biol. 2013 Mar 7;58(5):1433-46 - PubMed
  14. Eur Heart J. 2016 Apr 14;37(15):1220-7 - PubMed
  15. Phys Med Biol. 2012 Mar 21;57(6):1595-615 - PubMed
  16. Med Phys. 2013 Mar;40(3):031108 - PubMed
  17. AJNR Am J Neuroradiol. 2017 Dec;38(12):2257-2263 - PubMed
  18. Med Phys. 2015 Aug;42(8):4941-53 - PubMed
  19. Invest Radiol. 2016 Jul;51(7):421-9 - PubMed
  20. Phys Med Biol. 2007 Aug 7;52(15):4679-96 - PubMed
  21. Radiology. 2014 May;271(2):327-42 - PubMed
  22. J Med Imaging (Bellingham). 2016 Oct;3(4):043504 - PubMed
  23. J Comput Assist Tomogr. 2016 Jul-Aug;40(4):663-70 - PubMed
  24. Phys Med Biol. 2016 Feb 21;61(4):1572-95 - PubMed
  25. Radiology. 2015 Sep;276(3):637-53 - PubMed
  26. Heart. 2008 Jun;94(6):781-92 - PubMed
  27. Radiology. 2016 Apr;279(1):239-45 - PubMed
  28. Phys Med Biol. 2017 Jan 7;62(1):202-213 - PubMed
  29. Med Phys. 2013 Oct;40(10):100901 - PubMed
  30. Phys Med Biol. 2007 Jul 21;52(14):4027-46 - PubMed
  31. Radiol Clin North Am. 2015 Sep;53(5):985-1003 - PubMed
  32. Med Phys. 2013 Mar;40(3):031908 - PubMed
  33. Invest Radiol. 2018 Nov;53(11):655-662 - PubMed
  34. Med Phys. 2018 Nov;45(11):4822-4843 - PubMed
  35. Med Phys. 2017 Oct;44(10):5120-5127 - PubMed
  36. AJR Am J Roentgenol. 2001 Apr;176(4):979-86 - PubMed
  37. Radiographics. 2015 May-Jun;35(3):765-79 - PubMed
  38. Med Phys. 2002 Nov;29(11):2655-71 - PubMed
  39. Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132: - PubMed
  40. Injury. 2016 Sep;47(9):1893-7 - PubMed
  41. Invest Radiol. 2018 Mar;53(3):143-149 - PubMed
  42. Med Phys. 2012 Jul;39(7):4115-22 - PubMed
  43. Eur J Radiol. 2014 Jan;83(1):6-19 - PubMed
  44. Med Phys. 2019 Nov;46(11):e735-e756 - PubMed
  45. Med Phys. 2018 Nov;45(11):4977-4985 - PubMed
  46. Radiology. 2018 Nov;289(2):293-312 - PubMed

Publication Types

Grant support