Display options
Share it on

Genes Dev. 2021 Jul 01;35(13):1020-1034. doi: 10.1101/gad.348174.120. Epub 2021 Jun 24.

Hierarchical reactivation of transcription during mitosis-to-G1 transition by Brn2 and Ascl1 in neural stem cells.

Genes & development

Mário A F Soares, Diogo S Soares, Vera Teixeira, Abeer Heskol, Raul Bardini Bressan, Steven M Pollard, Raquel A Oliveira, Diogo S Castro

Affiliations

  1. Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
  2. i3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
  3. Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom.

PMID: 34168041 PMCID: PMC8247608 DOI: 10.1101/gad.348174.120

Abstract

During mitosis, chromatin condensation is accompanied by a global arrest of transcription. Recent studies suggest transcriptional reactivation upon mitotic exit occurs in temporally coordinated waves, but the underlying regulatory principles have yet to be elucidated. In particular, the contribution of sequence-specific transcription factors (TFs) remains poorly understood. Here we report that Brn2, an important regulator of neural stem cell identity, associates with condensed chromatin throughout cell division, as assessed by live-cell imaging of proliferating neural stem cells. In contrast, the neuronal fate determinant Ascl1 dissociates from mitotic chromosomes. ChIP-seq analysis reveals that Brn2 mitotic chromosome binding does not result in sequence-specific interactions prior to mitotic exit, relying mostly on electrostatic forces. Nevertheless, surveying active transcription using single-molecule RNA-FISH against immature transcripts reveals differential reactivation kinetics for key targets of Brn2 and Ascl1, with transcription onset detected in early (anaphase) versus late (early G1) phases, respectively. Moreover, by using a mitotic-specific dominant-negative approach, we show that competing with Brn2 binding during mitotic exit reduces the transcription of its target gene

© 2021 Soares et al.; Published by Cold Spring Harbor Laboratory Press.

Keywords: Ascl1; Brn2; M-G1 transition; mitotic bookmarking; neural stem cell; transcription

References

  1. Elife. 2016 Feb 15;5:e10877 - PubMed
  2. Nat Rev Neurosci. 2002 Jul;3(7):517-30 - PubMed
  3. PLoS Genet. 2013;9(2):e1003288 - PubMed
  4. J Cell Sci. 2008 Apr 15;121(Pt 8):1204-12 - PubMed
  5. Development. 1999 Feb;126(3):525-34 - PubMed
  6. Nat Cell Biol. 2019 Nov;21(11):1393-1402 - PubMed
  7. Nat Commun. 2019 Jan 30;10(1):487 - PubMed
  8. Cell. 2019 Mar 7;176(6):1502-1515.e10 - PubMed
  9. Development. 1998 Aug;125(16):3087-100 - PubMed
  10. Nat Biotechnol. 2005 Oct;23(10):1308-14 - PubMed
  11. Cell Mol Life Sci. 2018 May;75(9):1587-1612 - PubMed
  12. Genes Dev. 2016 Nov 15;30(22):2538-2550 - PubMed
  13. Genes Dev. 2013 Feb 1;27(3):251-60 - PubMed
  14. Nature. 2019 Dec;576(7785):158-162 - PubMed
  15. Cell Rep. 2015 Mar 10;10(9):1544-1556 - PubMed
  16. Cold Spring Harb Symp Quant Biol. 2017;82:197-205 - PubMed
  17. J Biol Chem. 2006 May 12;281(19):13374-13381 - PubMed
  18. Genes Dev. 2020 Jul 1;34(13-14):913-930 - PubMed
  19. Elife. 2019 Oct 10;8: - PubMed
  20. Development. 2016 Dec 1;143(23):4301-4311 - PubMed
  21. Elife. 2019 Jun 11;8: - PubMed
  22. DNA Res. 2009 Oct;16(5):261-73 - PubMed
  23. Nat Rev Mol Cell Biol. 2019 Jan;20(1):55-64 - PubMed
  24. Nat Protoc. 2012 Sep;7(9):1728-40 - PubMed
  25. Nat Neurosci. 2003 Nov;6(11):1162-8 - PubMed
  26. Nat Neurosci. 2008 Nov;11(11):1247-51 - PubMed
  27. Cell Rep. 2017 May 16;19(7):1283-1293 - PubMed
  28. Elife. 2019 Dec 03;8: - PubMed
  29. Nat Cell Biol. 2016 Nov;18(11):1139-1148 - PubMed
  30. Cell. 2013 Oct 24;155(3):621-35 - PubMed
  31. Science. 2017 Oct 6;358(6359):119-122 - PubMed
  32. Cell. 2002 Nov 1;111(3):407-17 - PubMed
  33. Stem Cells. 2009 Apr;27(4):847-56 - PubMed
  34. Genes Dev. 2002 Jul 15;16(14):1760-5 - PubMed
  35. Cell Rep. 2016 Oct 4;17(2):469-483 - PubMed
  36. Science. 2004 Jul 16;305(5682):386-9 - PubMed
  37. Nat Biotechnol. 2010 May;28(5):495-501 - PubMed
  38. PLoS Biol. 2005 Sep;3(9):e283 - PubMed
  39. J Mol Biol. 2007 Jul 20;370(4):687-700 - PubMed
  40. Front Cell Neurosci. 2014 Dec 02;8:412 - PubMed
  41. Science. 2013 Dec 6;342(6163):1203-8 - PubMed
  42. EMBO Rep. 2017 Feb;18(2):319-333 - PubMed
  43. Cell. 2012 Aug 17;150(4):725-37 - PubMed
  44. Genes Dev. 2011 May 1;25(9):930-45 - PubMed
  45. Development. 2017 Oct 15;144(20):3633-3645 - PubMed
  46. Science. 2013 Feb 15;339(6121):819-23 - PubMed
  47. Trends Cell Biol. 2020 Jun;30(6):491-500 - PubMed
  48. Dev Cell. 2006 Dec;11(6):831-44 - PubMed
  49. Genome Res. 2019 Feb;29(2):250-260 - PubMed
  50. Proteins. 2011 Feb;79(2):674-7 - PubMed
  51. Mol Cell Biol. 2004 Oct;24(20):8834-46 - PubMed
  52. Nat Commun. 2015 Oct 01;6:8497 - PubMed
  53. Nat Commun. 2013;4:2125 - PubMed
  54. Elife. 2016 Nov 19;5: - PubMed

Publication Types