Display options
Share it on

Eur J Appl Physiol. 2021 Oct;121(10):2913-2924. doi: 10.1007/s00421-021-04758-6. Epub 2021 Jul 01.

The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle.

European journal of applied physiology

Corey E Mazo, Andrew C D'Lugos, Kaylin R Sweeney, Jacob M Haus, Siddhartha S Angadi, Chad C Carroll, Jared M Dickinson

Affiliations

  1. School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
  2. Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
  3. Arizona State University, Phoenix, AZ, USA.
  4. Department of Kinesiology, University of Virginia, Charlottesville, VA, USA.
  5. College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA.
  6. Department of Health Sciences, Central Washington University, 400 E University Way, Ellensburg, WA, 98926, USA. [email protected].

PMID: 34196787 DOI: 10.1007/s00421-021-04758-6

Abstract

PURPOSE: Aerobic (AE) and resistance (RE) exercise elicit unique adaptations in skeletal muscle. The purpose here was to compare the post-exercise response of mTOR signaling and select autophagy markers in skeletal muscle to acute AE and RE.

METHODS: In a randomized, cross-over design, six untrained men (27 ± 3 years) completed acute AE (40 min cycling, 70% HRmax) and RE (8 sets, 10 repetitions, 65% 1RM). Muscle biopsies were taken at baseline, and at 1 h and 4 h following each exercise. Western blot analyses were performed to examine total and phosphorylated protein levels. Upstream regulator analyses of skeletal muscle transcriptomics were performed to discern the predicted activation states of mTOR and FOXO3.

RESULTS: Compared to AE, acute RE resulted in greater phosphorylation (P < 0.05) of mTOR

CONCLUSION: Both acute AE and RE stimulate mTOR signaling and similarly impact select markers of autophagy. These findings indicate the early adaptive response of untrained human skeletal muscle to divergent exercise modes is not likely mediated through large differences in mTOR signaling or autophagy.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Anabolic; Catabolic; Cell signaling; Endurance; Hypertrophy; Weightlifting

References

  1. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19(7):786–788. https://doi.org/10.1096/fj.04-2179fje - PubMed
  2. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019. https://doi.org/10.1038/ncb1101-1014 - PubMed
  3. Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H (2018) Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiol Rep 6(7):e13651. https://doi.org/10.14814/phy2.13651 - PubMed
  4. Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG (2010) Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc 42(10):1843–1852. https://doi.org/10.1249/MSS.0b013e3181d964e4 - PubMed
  5. Coffey VG, Shield A, Canny BJ, Carey KA, Cameron-Smith D, Hawley JA (2006a) Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 290(5):E849-855. https://doi.org/10.1152/ajpendo.00299.2005 - PubMed
  6. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006b) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20(1):190–192. https://doi.org/10.1096/fj.05-4809fje - PubMed
  7. Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141(5):856–862. https://doi.org/10.3945/jn.111.139485 - PubMed
  8. Dickinson JM, D’Lugos AC, Mahmood TN, Ormsby JC, Salvo L, Dedmon WL, Patel SH, Katsma MS, Mookadam F, Gonzales RJ, Hale TM, Carroll CC, Angadi SS (2017a) Exercise protects skeletal muscle during chronic doxorubicin administration. Med Sci Sports Exerc 49(12):2394–2403. https://doi.org/10.1249/MSS.0000000000001395 - PubMed
  9. Dickinson JM, Reidy PT, Gundermann DM, Borack MS, Walker DK, D’Lugos AC, Volpi E, Rasmussen BB (2017b) The impact of postexercise essential amino acid ingestion on the ubiquitin proteasome and autophagosomal-lysosomal systems in skeletal muscle of older men. J Appl Physiol 122(3):620–630. https://doi.org/10.1152/japplphysiol.00632.2016 - PubMed
  10. Dickinson JM, D’Lugos AC, Naymik MA, Siniard AL, Wolfe AJ, Curtis DR, Huentelman MJ, Carroll CC (2018) Transcriptome response of human skeletal muscle to divergent exercise stimuli. J Appl Physiol 124(6):1529–1540. https://doi.org/10.1152/japplphysiol.00014.2018 - PubMed
  11. D’Lugos AC, Patel SH, Ormsby JC, Curtis DP, Fry CS, Carroll CC, Dickinson JM (2018) Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J Appl Physiol 124(4):1012–1024. https://doi.org/10.1152/japplphysiol.00922.2017 - PubMed
  12. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(Pt 7):1535–1546. https://doi.org/10.1113/jphysiol.2008.163816 - PubMed
  13. Dunn WA (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4(4):139–143. https://doi.org/10.1016/0962-8924(94)90069-8 - PubMed
  14. Fritzen AM, Madsen AB, Kleinert M, Treebak JT, Lundsgaard AM, Jensen TE, Richter EA, Wojtaszewski J, Kiens B, Frosig C (2016) Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. J Physiol 594(3):745–761. https://doi.org/10.1113/JP271405 - PubMed
  15. Gollnick PD (1986) Metabolic regulation in skeletal muscle: influence of endurance training as exerted by mitochondrial protein concentration. Acta Physiol Scand Suppl 556:53–66 - PubMed
  16. Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589(Pt 22):5485–5501. https://doi.org/10.1113/jphysiol.2011.218255 - PubMed
  17. Harber M, Trappe S (2008) Single muscle fiber contractile properties of young competitive distance runners. J Appl Physiol 105(2):629–636. https://doi.org/10.1152/japplphysiol.00995.2007 - PubMed
  18. Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2009) Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 297(5):R1452–R1459. https://doi.org/10.1152/ajpregu.00354.2009 - PubMed
  19. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2012) Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol 113(9):1495–1504. https://doi.org/10.1152/japplphysiol.00786.2012 - PubMed
  20. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242(9):2278–2282 - PubMed
  21. Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56(4):831–838. https://doi.org/10.1152/jappl.1984.56.4.831 - PubMed
  22. Jamart C, Naslain D, Gilson H, Francaux M (2013) Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab 305(8):E964–E974. https://doi.org/10.1152/ajpendo.00270.2013 - PubMed
  23. Ju J-s, Jeon S-i, Park J-y, Lee J-y, Lee S-c, Cho K-j, Jeong J-m (2016) Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. J Physiol Sci 66(5):417–430. https://doi.org/10.1007/s12576-016-0440-9 - PubMed
  24. Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584(7):1374–1378. https://doi.org/10.1016/j.febslet.2010.02.017 - PubMed
  25. Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703 - PubMed
  26. Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, Hoehn KL, Yan Z (2013) Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27(10):4184–4193. https://doi.org/10.1096/fj.13-228486 - PubMed
  27. Lo Verso F, Carnio S, Vainshtein A, Sandri M (2014) Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 10(11):1883–1894. https://doi.org/10.4161/auto.32154 - PubMed
  28. Louis E, Raue U, Yang Y, Jemiolo B, Trappe S (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol 103(5):1744–1751. https://doi.org/10.1152/japplphysiol.00679.2007 - PubMed
  29. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. https://doi.org/10.1016/j.cmet.2007.11.001 - PubMed
  30. Moore DR, Phillips SM, Babraj JA, Smith K, Rennie MJ (2005) Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab 288(6):E1153-1159. https://doi.org/10.1152/ajpendo.00387.2004 - PubMed
  31. Ogasawara R, Kobayashi K, Tsutaki A, Lee K, Abe T, Fujita S, Nakazato K, Ishii N (2013) mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. J Appl Physiol 114(7):934–940. https://doi.org/10.1152/japplphysiol.01161.2012 - PubMed
  32. Parkington JD, Siebert AP, Lebrasseur NK, Fielding RA (2003) Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 285(5):R1086–R1090. https://doi.org/10.1152/ajpregu.00324.2003 - PubMed
  33. Patel SH, D’Lugos AC, Eldon ER, Curtis D, Dickinson JM, Carroll CC (2017) Impact of acetaminophen consumption and resistance exercise on extracellular matrix gene expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 313(1):R44–R50. https://doi.org/10.1152/ajpregu.00019.2017 - PubMed
  34. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273(1 Pt 1):E99-107. https://doi.org/10.1152/ajpendo.1997.273.1.E99 - PubMed
  35. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276(1):E118-124. https://doi.org/10.1152/ajpendo.1999.276.1.E118 - PubMed
  36. Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol 107(3):645–654. https://doi.org/10.1152/japplphysiol.00452.2009 - PubMed
  37. Reidy PT, Rasmussen BB (2016) Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J Nutr 146(2):155–183. https://doi.org/10.3945/jn.114.203208 - PubMed
  38. Rundqvist HC, Montelius A, Osterlund T, Norman B, Esbjornsson M, Jansson E (2019) Acute sprint exercise transcriptome in human skeletal muscle. PLoS ONE 14(10):e0223024. https://doi.org/10.1371/journal.pone.0223024 - PubMed
  39. Sanchez AM, Bernardi H, Py G, Candau RB (2014a) Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 307(8):R956-969. https://doi.org/10.1152/ajpregu.00187.2014 - PubMed
  40. Sanchez AM, Candau RB, Bernardi H (2014b) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71(9):1657–1671. https://doi.org/10.1007/s00018-013-1513-z - PubMed
  41. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412. https://doi.org/10.1016/s0092-8674(04)00400-3 - PubMed
  42. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103(2):253–262. https://doi.org/10.1016/s0092-8674(00)00117-3 - PubMed
  43. Stuart CA, Howell MEA, Baker JD, Dykes RJ, Duffourc MM, Ramsey MW, Stone MH (2010) Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers. Med Sci Sports Exerc 42(1):96–106. https://doi.org/10.1249/MSS.0b013e3181ad7f36 - PubMed
  44. Vainshtein A, Hood DA (2016) The regulation of autophagy during exercise in skeletal muscle. J Appl Physiol 120(6):664–673. https://doi.org/10.1152/japplphysiol.00550.2015 - PubMed
  45. Volpi E, Chinkes DL, Rasmussen BB (2008) Sequential muscle biopsies during a 6-h tracer infusion do not affect human mixed muscle protein synthesis and muscle phenylalanine kinetics. Am J Physiol Endocrinol Metab 295(4):E959-963. https://doi.org/10.1152/ajpendo.00671.2007 - PubMed
  46. Wang L, Mascher H, Psilander N, Blomstrand E, Sahlin K (2011) Sahlin Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol 111(5):1335–1344. https://doi.org/10.1152/japplphysiol.00086.2011 - PubMed
  47. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586(15):3701–3717. https://doi.org/10.1113/jphysiol.2008.153916 - PubMed
  48. Yang Y, Creer A, Jemiolo B, Trappe S (2005) Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 98(5):1745–1752. https://doi.org/10.1152/japplphysiol.01185.2004 - PubMed
  49. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. https://doi.org/10.1016/j.cmet.2007.11.004 - PubMed

Publication Types

Grant support