Display options
Share it on

Pharm Res. 2021 Jul;38(7):1139-1156. doi: 10.1007/s11095-021-03076-y. Epub 2021 Jul 12.

Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans.

Pharmaceutical research

Nadia O Bamfo, Chelsea Hosey-Cojocari, Leslie Z Benet, Connie M Remsberg

Affiliations

  1. Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.
  2. Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
  3. Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA.
  4. Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, USA.
  5. Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA. [email protected].

PMID: 34254223 DOI: 10.1007/s11095-021-03076-y

Abstract

PURPOSE: A dataset of fraction excreted unchanged in the urine (fe) values was developed and used to evaluate the ability of preclinical animal species to predict high urinary excretion, and corresponding poor metabolism, in humans.

METHODS: A literature review of fe values in rats, dogs, and monkeys was conducted for all Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3 and 4 drugs (n=352) and a set of Class 1 and 2 drugs (n=80). The final dataset consisted of 202 total fe values for 135 unique drugs. Human and animal data were compared through correlations, two-fold analysis, and binary classifications of high (fe ≥30%) versus low (<30%) urinary excretion in humans. Receiver Operating Characteristic curves were plotted to optimize animal fe thresholds.

RESULTS: Significant correlations were found between fe values for each animal species and human fe (p<0.05). Sixty-five percent of all fe values were within two-fold of human fe with animals more likely to underpredict human urinary excretion as opposed to overpredict. Dogs were the most reliable predictors of human fe of the three animal species examined with 72% of fe values within two-fold of human fe and the greatest accuracy in predicting human fe ≥30%. ROC determined thresholds of ≥25% in rats, ≥19% in dogs, and ≥10% in monkeys had improved accuracies in predicting human fe of ≥30%.

CONCLUSIONS: Drugs with high urinary excretion in animals are likely to have high urinary excretion in humans. Animal models tend to underpredict the urinary excretion of unchanged drug in humans.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: BDDCS; Fraction excreted unchanged; animal models; poorly-metabolized drugs; renal clearance

References

  1. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283(1):46–58. - PubMed
  2. Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. I. Clearance. Drug Metab Dispos. 2004;32(6):603–11. https://doi.org/10.1124/dmd.32.6.603 . - PubMed
  3. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405. https://doi.org/10.1124/dmd.108.020479 . - PubMed
  4. Yang X, Gandhi YA, Duignan DB, Morris ME. Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships. AAPS J. 2009;11(3):511–25. https://doi.org/10.1208/s12248-009-9124-1 . - PubMed
  5. Hosea NA, Collard WT, Cole S, Maurer TS, Fang RX, Jones H, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol. 2009;49(5):513–33. https://doi.org/10.1177/0091270009333209 . - PubMed
  6. Ring BJ, Chien JY, Adkison KK, Jones HM, Rowland M, Jones RD, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessement of prediction methods of human clearance. J Pharm Sci. 2011;100(10):4090–110. https://doi.org/10.1002/jps.22552 . - PubMed
  7. Varma MV, Chang G, Lai Y, Feng B, El-Kattan AF, Litchfield J, et al. Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion. Drug Metab Dispos. 2012;40(8):1527–37. https://doi.org/10.1124/dmd.112.044628 . - PubMed
  8. Hosey CM, Broccatelli F, Benet LZ. Predicting when biliary excretion of parent drug is a major route of elimination in humans. AAPS J. 2014;16(5):1085–96. https://doi.org/10.1208/s12248-014-9636-1 . - PubMed
  9. Sharifi M, Ghafourian T. Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 2014;16(1):65–78. https://doi.org/10.1208/s12248-013-9541-z . - PubMed
  10. Hosey CM, Benet LZ. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions. Mol Pharmaceut. 2015;12(5):1456–66. https://doi.org/10.1021/mp500783g . - PubMed
  11. Watanabe R, Ohashi R, Esaki T, Kawashima H, Natsume-Kitatani Y, Nagao C, et al. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci Rep. 2019;9(1):18782. https://doi.org/10.1038/s41598-019-55325-1 . - PubMed
  12. Wajima T, Fukumura K, Yano Y, Oguma T. Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis: oral clearance. J Pharm Sci. 2003;92(12):2427–40. https://doi.org/10.1002/jps.10510 . - PubMed
  13. Wajima T, Yano Y, Fukumura K, Oguma T. Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. J Pharm Sci. 2004;93(7):1890–900. https://doi.org/10.1002/jps.20099 . - PubMed
  14. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42. https://doi.org/10.2165/00003088-200645050-00006 . - PubMed
  15. Poulin P, Jones RD, Jones HM, Gibson CR, Rowland M, Chien JY, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. 2011;100(10):4127–57. https://doi.org/10.1002/jps.22550 . - PubMed
  16. Sharma V, McNeill JH. To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol. 2009;157(6):907–21. https://doi.org/10.1111/j.1476-5381.2009.00267.x . - PubMed
  17. Huh Y, Smith DE, Feng MR. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs. Xenobiotica. 2011;41(11):972–87. https://doi.org/10.3109/00498254.2011.598582 . - PubMed
  18. Tang H, Mayersohn M. A global examination of allometric scaling for predicting human drug clearance and the prediction of large vertical allometry. J Pharm Sci. 2006;95(8):1783–99. https://doi.org/10.1002/jps.20481 . - PubMed
  19. Huang Q, Riviere JE. The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opin Drug Metab Toxicol. 2014;10(9):1241–53. https://doi.org/10.1517/17425255.2014.934671 . - PubMed
  20. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94. https://doi.org/10.1517/17425255.2.6.875 . - PubMed
  21. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23. - PubMed
  22. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47. https://doi.org/10.1208/s12248-011-9290-9 . - PubMed
  23. Hosey CM, Chan R, Benet LZ. BDDCS Predictions, Self-Correcting Aspects of BDDCS Assignments, BDDCS Assignment Corrections, and Classification for more than 175 Additional Drugs. AAPS J. 2016;18(1):251–60. https://doi.org/10.1208/s12248-015-9845-2 . - PubMed
  24. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21(20):3940–1. https://doi.org/10.1093/bioinformatics/bti623 . - PubMed
  25. Zornoza T, Guerri C, Polache A, Granero L. Disposition of acamprosate in the rat: influence of probenecid. Biopharm Drug Dispos. 2002;23(7):283–91. https://doi.org/10.1002/bdd.322 . - PubMed
  26. Schneck DW, Grove K, Dewitt FO, Shiroff RA, Hayes AH Jr. The quantitative disposition of procainamide and N-acetylprocainamide in the rat. J Pharmacol Exp Ther. 1978;204(1):219–25. - PubMed
  27. McNulty MJ, Deal DL, Nelson FR, Weller S, Chandrasurin P, Shockcor J, et al. Disposition of acrivastine in the male beagle dog. Drug Metab Dispos. 1992;20(5):679–87. - PubMed
  28. Aubets J, Cardenas A, Salva M, Jansat JM, Martinez-Tobed A, Palacios JM. Disposition and metabolism of almotriptan in rats, dogs and monkeys. Xenobiotica. 2006;36(9):807–23. https://doi.org/10.1080/00498250600802508 . - PubMed
  29. Walton K, Dorne JL, Renwick AG. Species-specific uncertainty factors for compounds eliminated principally by renal excretion in humans. Food Chem Toxicol. 2004;42(2):261–74. - PubMed
  30. Belpaire FM, de Smet F, Vynckier LJ, Vermeulen AM, Rosseel MT, Bogaert MG, et al. Effect of aging on the pharmcokinetics of atenolol, metoprolol and propranolol in the rat. J Pharmacol Exp Ther. 1990;254(1):116–22. - PubMed
  31. McAinsh J, Holmes BF. Pharmacokinetic studies with atenolol in the dog. Biopharm Drug Dispos. 1983;4(3):249–61. - PubMed
  32. Kripalani KJ, Singhvi SM, Weinstein SH, Everett DW, Bathala MS, Dean AV, et al. Disposition of [14C]aztreonam in rats, dogs, and monkeys. Antimicrob Agents Chemother. 1984;26(2):119–26. - PubMed
  33. Watanabe T, Maeda K, Kondo T, Nakayama H, Horita S, Kusuhara H, et al. Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments. Drug Metab Dispos. 2009;37(7):1471–9. https://doi.org/10.1124/dmd.108.026062 . - PubMed
  34. Kurihara A, Naganuma H, Hisaoka M, Tokiwa H, Kawahara Y. Prediction of human pharmacokinetics of panipenem-betamipron, a new carbapenem, from animal data. Antimicrob Agents Chemother. 1992;36(9):1810–6. - PubMed
  35. Buhring KU, Sailer H, Faro HP, Leopold G, Pabst J, Garbe A. Pharmacokinetics and metabolism of bisoprolol-14C in three animal species and in humans. J Cardiovasc Pharmacol. 1986;8(Suppl 11):S21–8. - PubMed
  36. Singhvi SM, Peterson AE, Ross JJ Jr, Shaw JM, Keim GR, Migdalof BH. Pharmacokinetics of captopril in dogs and monkeys. J Pharm Sci. 1981;70(10):1108–12. - PubMed
  37. Siddik ZH, Newell DR, Boxall FE, Harrap KR. The comparative pharmacokinetics of carboplatin and cisplatin in mice and rats. Biochem Pharmacol. 1987;36(12):1925–32. - PubMed
  38. Gaver RC, George AM, Duncan GF, Morris AD, Deeb G, Faulkner HC, et al. The disposition of carboplatin in the beagle dog. Cancer Chemother Pharmacol. 1988;21(3):197–202. - PubMed
  39. Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of the disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animals. J Pharmacokinet Biopharm. 1984;12(3):241–61. - PubMed
  40. Matsushita H, Suzuki H, Sugiyama Y, Sawada Y, Iga T, Hanano M, et al. Prediction of the pharmacokinetics of cefodizime and cefotetan in humans from pharmacokinetic parameters in animals. J Pharmacobiodyn. 1990;13(10):602–11. - PubMed
  41. Zhang J, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Pharmacokinetic interaction between JBP485 and cephalexin in rats. Drug Metab Dispos. 2010;38(6):930–8. https://doi.org/10.1124/dmd.110.032060 . - PubMed
  42. Cabana BE, van Harken DR, Hottendorf GH. Comparative pharmacokinetics and metabolism of cephapirin in laboratory animals and humans. Antimicrob Agents Chemother. 1976;10(2):307–17. - PubMed
  43. Cundy KC, Li ZH, Hitchcock MJ, Lee WA. Pharmacokinetics of cidofovir in monkeys. Evidence for a prolonged elimination phase representing phosphorylated drug. Drug Metab Dispos. 1996;24(7):738–44. - PubMed
  44. Taylor DC, Cresswell PR, Bartlett DC. The metabolism and elimination of cimetidine, a histamine H2-receptor antagonist, in the rat, dog, and man. Drug Metab Dispos. 1978;6(1):21–30. - PubMed
  45. Tahara H, Kusuhara H, Chida M, Fuse E, Sugiyama Y. Is the monkey an appropriate animal model to examine drug-drug interactions involving renal clearance? Effect of probenecid on the renal elimination of H2 receptor antagonists. J Pharmacol Exp Ther. 2006;316(3):1187–94. https://doi.org/10.1124/jpet.105.094052 . - PubMed
  46. Bonate PL, Arthaud L, Stuhler J, Yerino P, Press RJ, Rose JQ. The distribution, metabolism, and elimination of clofarabine in rats. Drug Metab Dispos. 2005;33(6):739–48. https://doi.org/10.1124/dmd.104.002592 . - PubMed
  47. Lutz RJ, Galbraith WM, Dedrick RL, Shrager R, Mellett LB. A model for the kinetics of distribution of actinomycin-D in the beagle dog. J Pharmacol Exp Ther. 1977;200(3):469–78. - PubMed
  48. Baldwin JR, Lewis RC, Phillips BA, Overmyer SK, Hatfield NZ, Narang PK. Dose-independent pharmacokinetics of the cardioprotective agent dexrazoxane in dogs. Biopharm Drug Dispos. 1996;17(6):541–50. https://doi.org/10.1002/(SICI)1099-081X(199608)17:6<541::AID-BDD975>3.0.CO;2-5 . - PubMed
  49. Odinecs A, Pereira C, Nosbisch C, Unadkat JD. Prenatal and postpartum pharmacokinetics of stavudine (2',3'-didehydro-3'-deoxythymidine) and didanosine (dideoxyinosine) in pigtailed macaques (Macaca nemestrina). Antimicrob Agents Chemother. 1996;40(10):2423–5. - PubMed
  50. Harrison LI, Gibaldi M. Pharmacokinetics of digoxin in the rat. Drug Metab Dispos. 1976;4(1):88–93. - PubMed
  51. Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16. https://doi.org/10.1124/dmd.109.028829 . - PubMed
  52. Cook CS, Gwilt PR, Kowalski K, Gupta S, Oppermann J, Karim A. Pharmacokinetics of disopyramide in the dog. Importance of mono-N-dealkylated metabolite kinetics in assessing pharmacokinetic modeling of the parent drug. Drug Metab Dispos. 1990;18(1):42–9. - PubMed
  53. Wong BK, Bruhin PJ, Barrish A, Lin JH. Nonlinear dorzolamide pharmacokinetics in rats: concentration-dependent erythrocyte distribution and drug-metabolite displacement interaction. Drug Metab Dispos. 1996;24(6):659–63. - PubMed
  54. Schach von Wittenau M, Twomey TM. The disposition of doxycyline by man and dog. Chemotherapy. 1971;16(4):217–28. - PubMed
  55. Wong BK, Sahly Y, Mistry G, Waldman S, Musson D, Majumdar A, et al. Comparative disposition of [14C]ertapenem, a novel carbapenem antibiotic, in rat, monkey and man. Xenobiotica. 2004;34(4):379–89. https://doi.org/10.1080/00498250410001670643 . - PubMed
  56. Lin JH, Los LE, Ulm EH, Duggan DE. Urinary excretion kinetics of famotidine in rats. Drug Metab Dispos. 1987;15(2):212–6. - PubMed
  57. Boom SP, Hoet S, Russel FG. Saturable urinary excretion kinetics of famotidine in the dog. J Pharm Pharmacol. 1997;49(3):288–92. - PubMed
  58. Kamath AV, Yao M, Zhang Y, Chong S. Effect of fruit juices on the oral bioavailability of fexofenadine in rats. J Pharm Sci. 2005;94(2):233–9. https://doi.org/10.1002/jps.20231 . - PubMed
  59. Forster HJ, Kramer I, Pook KH, Wahl D. Studies on the pharmacokinetics and biotransformation of ipratropium bromide in the rat and dog. Arzneimittel-Forschung. 1976;26(5a):992–1005. - PubMed
  60. Cabana BE, Taggart JG. Comparative pharmacokinetics of BB-K8 and kanamycin in dogs and humans. Antimicrob Agents Chemother. 1973;3(4):478–83. - PubMed
  61. Mroszczak EJ, Lee FW, Combs D, Sarnquist FH, Huang BL, Wu AT, et al. Ketorolac tromethamine absorption, distribution, metabolism, excretion, and pharmacokinetics in animals and humans. Drug Metab Dispos. 1987;15(5):618–26. - PubMed
  62. Takubo T, Kato T, Kinami J, Hanada K, Ogata H. Effect of trimethoprim on the renal clearance of lamivudine in rats. J Pharm Pharmacol. 2000;52(3):315–20. - PubMed
  63. Blaney SM, Daniel MJ, Harker AJ, Godwin K, Balis FM. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother. 1995;39(12):2779–82. - PubMed
  64. Benedetti MS, Coupez R, Whomsley R, Nicolas JM, Collart P, Baltes E. Comparative pharmacokinetics and metabolism of levetiracetam, a new anti-epileptic agent, in mouse, rat, rabbit and dog. Xenobiotica. 2004;34(3):281–300. https://doi.org/10.1080/0049825042000196749 . - PubMed
  65. Hemeryck A, Mamidi RN, Bottacini M, Macpherson D, Kao M, Kelley MF. Pharmacokinetics, metabolism, excretion and plasma protein binding of 14C-levofloxacin after a single oral administration in the Rhesus monkey. Xenobiotica. 2006;36(7):597–613. https://doi.org/10.1080/00498250600674436 . - PubMed
  66. Choi YH, Kim SG, Lee MG. Dose-independent pharmacokinetics of metformin in rats: Hepatic and gastrointestinal first-pass effects. J Pharm Sci. 2006;95(11):2543–52. https://doi.org/10.1002/jps.20744 . - PubMed
  67. Fahrig L, Brasch H, Iven H. Pharmacokinetics of methotrexate (MTX) and 7-hydroxymethotrexate (7-OH-MTX) in rats and evidence for the metabolism of MTX to 7-OH-MTX. Cancer Chemother Pharmacol. 1989;23(3):156–60. - PubMed
  68. Slordal L, Jaeger R, Kjaeve J, Aarbakke J. Pharmacokinetics of 7-hydroxy-methotrexate and methotrexate in the rat. Pharmacol Toxicol. 1988;63(2):81–4. - PubMed
  69. Lui CY, Lee MG, Chiou WL. Clearance studies of methotrexate in dogs after multiple-rate infusion. Cancer Res. 1985;45(4):1545–8. - PubMed
  70. Kochak GM, Mason WD. The pharmacokinetics of alpha-methyldopa in dogs. J Pharmacokinet Biopharm. 1985;13(4):405–23. - PubMed
  71. Jungbluth GL, Jusko WJ. Dose-dependent pharmacokinetics of mezlocillin in rats. Antimicrob Agents Chemother. 1989;33(6):839–43. - PubMed
  72. Siefert HM, Domdey-Bette A, Henninger K, Hucke F, Kohlsdorfer C, Stass HH. Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: a comparison in humans and other mammalian species. J Antimicrob Chemother. 1999;43(Suppl B):69–76. - PubMed
  73. Singhvi SM, Heald AF, Murphy BF, DiFazio LT, Schreiber EC, Poutsiaka JW. Disposition of [14C]nadolol in dogs with reversible renal impairment induced by uranyl nitrate. Toxicol Appl Pharmacol. 1978;43(1):99–109. - PubMed
  74. Hennis PJ, Cronnelly R, Sharma M, Fisher DM, Miller RD. Metabolites of neostigmine and pyridostigmine do not contribute to antagonism of neuromuscular blockade in the dog. Anesthesiology. 1984;61(5):534–9. - PubMed
  75. Pongchaidecha M, Daley-Yates PT. Clearance and tissue uptake following 4-hour and 24-hour infusions of pamidronate in rats. Drug Metab Dispos. 1993;21(1):100–4. - PubMed
  76. Upton RA, Nguyen TL, Miller RD, Castagnoli N Jr. Renal and biliary elimination of vecuronium (ORG NC 45) and pancuronium in rats. Anesth Analg. 1982;61(4):313–6. - PubMed
  77. Scatina JA, Hicks DR, Kraml M, Cayen MN. Metabolic disposition and pharmacokinetics of pelrinone, a new cardiotonic drug, in laboratory animals and man. Eur J Drug Metab Pharmacokinet. 1990;15(1):37–48. - PubMed
  78. Bergstrom RF, Kay RD, Wagner JG. The pharmacokinetics of penicillamine in a female mongrel dog. J Pharmacokinet Biopharm. 1981;9(5):603–21. - PubMed
  79. Thummel KE, Shen DD, Isoherranen N, Sminth HE. Design and optimization of dosage regimens; pharmacokinetic data. In: Brunton LL, editor. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2006. p. 1787–888. - PubMed
  80. Khuenl-Brady KS, Sharma M, Chung K, Miller RD, Agoston S, Caldwell JE. Pharmacokinetics and disposition of pipecuronium bromide in dogs with and without ligated renal pedicles. Anesthesiology. 1989;71(6):919–22. - PubMed
  81. Patterson TA, Li M, Hotchkiss CE, Mauz A, Eddie M, Greischel A, et al. Toxicity assessment of pramipexole in juvenile rhesus monkeys. Toxicology. 2010;276(3):164–71. https://doi.org/10.1016/j.tox.2010.08.002 . - PubMed
  82. McNeil JJ, Mihaly GW, Anderson A, Marshall AW, Smallwood RA, Louis WJ. Pharmacokinetics of the H2- receptor antagonist ranitidine in man. Br J Clin Pharmacol. 1981;12(3):411–5. - PubMed
  83. Eddershaw PJ, Chadwick AP, Higton DM, Fenwick SH, Linacre P, Jenner WN, et al. Absorption and disposition of ranitidine hydrochloride in rat and dog. Xenobiotica. 1996;26(9):947–56. https://doi.org/10.3109/00498259609052496 . - PubMed
  84. Boom SP, Meyer I, Wouterse AC, Russel FG. A physiologically based kidney model for the renal clearance of ranitidine and the interaction with cimetidine and probenecid in the dog. Biopharm Drug Dispos. 1998;19(3):199–208. - PubMed
  85. Beconi MG, Reed JR, Teffera Y, Xia YQ, Kochansky CJ, Liu DQ, et al. Disposition of the dipeptidyl peptidase 4 inhibitor sitagliptin in rats and dogs. Drug Metab Dispos. 2007;35(4):525–32. https://doi.org/10.1124/dmd.106.013110 . - PubMed
  86. Carr RA, Pasutto FM, Foster RT. Influence of cimetidine coadministration on the pharmacokinetics of sotalol enantiomers in an anaesthetized rat model: evidence supporting active renal excretion of sotalol. Biopharm Drug Dispos. 1996;17(1):55–69. https://doi.org/10.1002/(SICI)1099-081X(199601)17:1<55::AID-BDD938>3.0.CO;2-# . - PubMed
  87. Kaul S, Dandekar KA, Schilling BE, Barbhaiya RH. Toxicokinetics of 2',3'-didehydro-3'-deoxythymidine, stavudine (D4T). Drug Metab Dispos. 1999;27(1):1–12. - PubMed
  88. Kaul S, Dandekar KA. Pharmacokinetics of the anti-human immunodeficiency virus nucleoside analog stavudine in cynomolgus monkeys. Antimicrob Agents Chemother. 1993;37(5):1160–2. - PubMed
  89. Sorgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of piperacillin/tazobactam. J Antimicrob Chemother. 1993;(31, Suppl A):39–60. - PubMed
  90. Cundy KC, Sueoka C, Lynch GR, Griffin L, Lee WA, Shaw JP. Pharmacokinetics and bioavailability of the anti-human immunodeficiency virus nucleotide analog 9-[(R)-2-(phosphonomethoxy)propyl]adenine (PMPA) in dogs. Antimicrob Agents Chemother. 1998;42(3):687–90. - PubMed
  91. Tegner K, Nilsson HT, Persson CG, Persson K, Ryrfeldt A. Elimination pathways of terbutaline. Eur J Respir Dis Suppl. 1984;134:93–100. - PubMed
  92. Nilsson HT, Persson CG, Persson K, Tegner K, Ryrfeldt A. The metabolism of terbutaline in dog and rat. Xenobiotica. 1973;3(9):615–23. https://doi.org/10.3109/00498257309151550 . - PubMed
  93. Oh YH, Han HK. Pharmacokinetic interaction of tetracycline with non-steroidal anti-inflammatory drugs via organic anion transporters in rats. Pharmacol Res. 2006;53(1):75–9. https://doi.org/10.1016/j.phrs.2005.09.003 . - PubMed
  94. Davi H, Tronquet C, Caix J, Simiand J, Briot C, Berger Y, et al. Disposition of tiludronate (Skelid) in animals. Xenobiotica. 1999;29(10):1017–31. https://doi.org/10.1080/004982599238083 . - PubMed
  95. Vickers S, Theoharides AD, Arison B, Balani SK, Cui D, Duncan CA, et al. In vitro and in vivo studies on the metabolism of tirofiban. Drug Metab Dispos. 1999;27(11):1360–6. - PubMed
  96. Mustafa S, Venkatesh P, Pasha K, Mullangi R, Srinivas NR. Altered intravenous pharmacokinetics of topotecan in rats with acute renal failure (ARF) induced by uranyl nitrate: do adenosine A1 antagonists (selective/non-selective) normalize the altered topotecan kinetics in ARF? Xenobiotica. 2006;36(12):1239–58. https://doi.org/10.1080/00498250600839385 . - PubMed
  97. Hodoshima N, Nakano Y, Izumi M, Mitomi N, Nakamura Y, Aoki M, et al. Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drug Metab Pharmacokinet. 2004;19(1):68–75. - PubMed
  98. Groen K, Warrander A, Miles GS, Booth BS, Mulder GJ. Sulphation and glucuronidation of xamoterol in the dog: dose dependence and site of sulphation. Xenobiotica. 1988;18(5):511–8. https://doi.org/10.3109/00498258809041688 . - PubMed
  99. Sorensen EV, Faergeman O, Day M, Bastain W. Pharmacokinetics of xamoterol after intravenous and oral administration to patients with chronic heart failure. Eur J Clin Pharmacol. 1988;35(2):183–5. - PubMed
  100. Oh YH, Han HK. Altered pharmacokinetics of zalcitabine by concurrent use of NSAIDs in rats. Acta Pharmacol Sin. 2006;27(1):119–22. https://doi.org/10.1111/j.1745-7254.2006.00249.x . - PubMed
  101. de Miranda P, Krasny HC, Page DA, Elion GB. The disposition of acyclovir in different species. J Pharmacol Exp Ther. 1981;219(2):309–15. - PubMed
  102. Krasny HC, de Miranda P, Blum MR, Elion GB. Pharmacokinetics and bioavailability of acyclovir in the dog. J Pharmacol Exp Ther. 1981;216(2):281–8. - PubMed
  103. Good SS, de Miranda P. Metabolic disposition of acyclovir in the guinea pig, rabbit, and monkey. Am J Med. 1982;73(1A):91–5. - PubMed
  104. Zhang Q, Liu Q, Wu J, Wang C, Peng J, Ma X, et al. PEPT1 involved in the uptake and transepithelial transport of cefditoren in vivo and in vitro. Eur J Pharmacol. 2009;612(1-3):9–14. https://doi.org/10.1016/j.ejphar.2009.03.081 . - PubMed
  105. Barbhaiya RH, Wang L, Shyu WC, Pittman KA. Absolute bioavailability of cefprozil after oral administration in beagles. Antimicrob Agents Chemother. 1992;36(3):687–9. - PubMed
  106. Resetarits DE, Bates TR. Apparent dose-dependent absorption of chlorothiazide in dogs. J Pharmacokinet Biopharm. 1979;7(5):463–70. - PubMed
  107. Gustafson JH, Benet LZ. Saturable kinetics of intravenous chlorothiazide in the rhesus monkey. J Pharmacokinet Biopharm. 1981;9(4):461–76. - PubMed
  108. Nouaille-Degorce B, Veau C, Dautrey S, Tod M, Laouari D, Carbon C, et al. Influence of renal failure on ciprofloxacin pharmacokinetics in rats. Antimicrob Agents Chemother. 1998;42(2):289–92. - PubMed
  109. Abadia AR, Aramayona JJ, Munoz MJ, Pla Delfina JM, Saez MP, Bregante MA. Disposition of ciprofloxacin following intravenous administration in dogs. J Vet Pharmacol Ther. 1994;17(5):384–8. - PubMed
  110. Kusajima H, Ishikawa N, Machida M, Uchida H, Irikura T. Pharmacokinetics of a new quinolone, AM-833, in mice, rats, rabbits, dogs, and monkeys. Antimicrob Agents Chemother. 1986;30(2):304–9. - PubMed
  111. Kim SH, Choi YM, Lee MG. Pharmacokinetics and pharmacodynamics of furosemide in protein-calorie malnutrition. J Pharmacokinet Biopharm. 1993;21(1):1–17. - PubMed
  112. Park JH, Lee WI, Yoon WH, Park YD, Lee JS, Lee MG. Pharmacokinetic and pharmacodynamic changes of furosemide after intravenous and oral administration to rats with alloxan-induced diabetes mellitus. Biopharm Drug Dispos. 1998;19(6):357–64. - PubMed
  113. Data JL, Rane A, Gerkens J, Wilkinson GR, Nies AS, Branch RA. The influence of indomethacin on the pharmacokinetics, diuretic response and hemodynamics of furosemide in the dog. J Pharmacol Exp Ther. 1978;206(2):431–8. - PubMed
  114. Kozutsumi D, Kawashima A, Sugimoto T, Kotohda Y, Fujimori S, Takami M, et al. Pharmacokinetics of 9alpha-fluoromedroxyprogesterone acetate in rats: comparison with medroxyprogesterone acetate. Biopharm Drug Dispos. 1999;20(6):277–84. - PubMed
  115. Harrison MP, Moss SR, Featherstone A, Fowkes AG, Sanders AM, Case DE. The disposition and metabolism of meropenem in laboratory animals and man. J Antimicrob Chemother. 1989;24(Suppl A):265–77. - PubMed
  116. Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos. 2007;35(2):268–74. https://doi.org/10.1124/dmd.106.011684 . - PubMed
  117. Øie S. Effect of 4-N-acetyl-sulfisoxazole on the disposition of sulfisoxazole in the rat. Int J Pharm. 1979;3(6):311–8. https://doi.org/10.1016/0378-5173(79)90123-6 . - PubMed
  118. Christensen S. The biological fate of riboflavin in mammals. A survey of literature and own investigations. Acta Pharmacol Toxicol (Copenh). 1973;32:3–72. - PubMed
  119. Mostafavi SA, Foster RT. Pharmacokinetics of single oral and multiple intravenous and oral administration of acebutolol enantiomers in a rat model. Biopharm Drug Dispos. 1998;19(7):425–31. https://doi.org/10.1002/(sici)1099-081x(199810)19:7<425::aid-bdd121>3.0.co;2-x . - PubMed
  120. Bae SK, Yang KH, Aryal DK, Kim YG, Lee MG. Pharmacokinetics of amitriptyline and one of its metabolites, nortriptyline, in rats: little contribution of considerable hepatic first-pass effect to low bioavailability of amitriptyline due to great intestinal first-pass effect. J Pharm Sci. 2009;98(4):1587–601. https://doi.org/10.1002/jps.21511 . - PubMed
  121. Aldridge A, Neims AH. The effects of phenobarbital and beta-naphthoflavone on the elimination kinetics and metabolite pattern of caffeine in the beagle dog. Drug Metab Dispos. 1979;7(6):378–82. - PubMed
  122. Peets EA, Weinstein R, Billard W, Symchowicz S. The metabolism of chlorpheniramine maleate in the dog and rat. Arch Int Pharmacodyn Ther. 1972;199(1):172–90. - PubMed
  123. McIntosh MP, Leong N, Katneni K, Morizzi J, Shackleford DM, Prankerd RJ. Impact of chlorpromazine self-association on its apparent binding constants with cyclodextrins: Effect of SBE(7)-beta-CD on the disposition of chlorpromazine in the rat. J Pharm Sci. 2010;99(7):2999–3008. https://doi.org/10.1002/jps.22064 . - PubMed
  124. Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats. J Pharmacokinet Biopharm. 1985;13(5):477–92. https://doi.org/10.1007/BF01059331 . - PubMed
  125. Salzman NP, Moran NC, Brodie BB. Identification and pharmacological properties of a major metabolite of chlorpromazine. Nature. 1955;176(4493):1122–3. https://doi.org/10.1038/1761122a0 . - PubMed
  126. Keyler DE, Le Couteur DG, Pond SM, St Peter JV, Pentel PR. Effects of specific antibody Fab fragments on desipramine pharmacokinetics in the rat in vivo and in the isolated, perfused liver. J Pharmacol Exp Ther. 1995;272(3):1117–23. - PubMed
  127. van der Klejin E, van Rossum JM, Muskens ET, Rijntjes NV. Pharmacokinetics of diazepam in dogs, mice and humans. Acta Pharmacol Toxicol (Copenh). 1971;29(Suppl 3):109–27. https://doi.org/10.1111/j.1600-0773.1971.tb03291.x . - PubMed
  128. Sugawara Y, Nakamura S, Usuki S, Ito Y, Suzuki T, Ohashi M, et al. Metabolism of diltiazem. II. Metabolic profile in rat, dog and man. J Pharmacobiodyn. 1988;11(4):224–33. https://doi.org/10.1248/bpb1978.11.224 . - PubMed
  129. Yeung PK, Feng JD, Buckley SJ. Effect of administration route and length of exposure on pharmacokinetics and metabolism of diltiazem in dogs. Drug Metabol Drug Interact. 2001;18(3-4):251–62. https://doi.org/10.1515/dmdi.2001.18.3-4.251 . - PubMed
  130. Tocco DJ. deLuna FA, Duncan AE, Vassil TC, Ulm EH. The physiological disposition and metabolism of enalapril maleate in laboratory animals. Drug Metab Dispos. 1982;10(1):15–9. - PubMed
  131. Lin TH, Sawada Y, Sugiyama Y, Iga T, Hanano M. Effect of phenobarbitone on the distribution and elimination of imipramine in rats. J Pharm Pharmacol. 1985;37(10):735–8. https://doi.org/10.1111/j.2042-7158.1985.tb04955.x . - PubMed
  132. Coutinho CB, Spiegel HE, Kaplan SA, Yu M, Christian RP, Carbone JJ, et al. Kinetics of absorption and excretion of levodopa in dogs. J Pharm Sci. 1971;60(7):1014–8. https://doi.org/10.1002/jps.2600600703 . - PubMed
  133. Keenaghan JB, Boyes RN. The tissue distribution, metabolism and excretion of lidocaine in rats, guinea pigs, dogs and man. J Pharmacol Exp Ther. 1972;180(2):454–63. - PubMed
  134. Murthy SS, Nelson WL, Shen DD, Power JM, Cahill CM, McLean AJ. Pharmacokinetic interaction between verapamil and metoprolol in the dog. Stereochemical aspects. Drug Metab Dispos. 1991;19(6):1093–100. - PubMed
  135. Kamimura H, Koga N, Oguri K, Yoshimura H. Enhanced elimination of theophylline, phenobarbital and strychnine from the bodies of rats and mice by squalane treatment. J Pharmacobiodyn. 1992;15(5):215–21. https://doi.org/10.1248/bpb1978.15.215 . - PubMed
  136. Sarhan F, Engasser JM, Batt AM, Magdalou J, Siest G. Effect of diphenylhydantoin and its main hydroxylated metabolite on the pharmacokinetics and the urinary and biliary excretion of phenobarbital and its p-hydroxy metabolite. Eur J Drug Metab Pharmacokinet. 1981;6(2):99–108. https://doi.org/10.1007/BF03189475 . - PubMed
  137. Taylor JA, Twomey TM, von Wittenau MS. The metabolic fate of prazosin. Xenobiotica. 1977;7(6):357–64. https://doi.org/10.3109/00498257709035794 . - PubMed
  138. Wu WM, Tang Y, Buchwald P, Bodor N. Pharmacokinetics and delta1-cortienic acid excretion after intravenous administration of prednisolone and loteprednol etabonate in rats. Pharmazie. 2010;65(6):412–6. - PubMed
  139. Chow HH, Lalka D. The influence of vitamin K3 treatment on the pharmacokinetics and metabolism of (+)-propranolol in the rat. Drug Metab Dispos. 1992;20(2):288–94. - PubMed
  140. Kwong EC, Laganiere S, Savitch JL, Nelson WL, Shen DD. Alteration in the disposition and metabolism of S(-)-propranolol in rats with active respiratory viral infection. Life Sci. 1988;42(12):1245–52. https://doi.org/10.1016/0024-3205(88)90556-5 . - PubMed
  141. Vu VT, Bai SA, Abramson FP. Interactions of phenobarbital with propranolol in the dog. 2. Bioavailability, metabolism and pharmacokinetics. J Pharmacol Exp Ther. 1983;224(1):55–61. - PubMed
  142. Sitar DS, Thornhill DP. Propylthiouracil: absorption, metabolism and excretion in the albino rat. J Pharmacol Exp Ther. 1972;183(2):440–8. - PubMed
  143. Giles HG, Roberts EA, Orrego H, Sellers EM. Disposition of intravenous propylthiouracil. J Clin Pharmacol. 1981;21(11):466–71. https://doi.org/10.1002/j.1552-4604.1981.tb05651.x . - PubMed
  144. Watari N, Wakamatsu A, Kaneniwa N. Comparison of disposition parameters of quinidine and quinine in the rat. J Pharmacobiodyn. 1989;12(10):608–15. https://doi.org/10.1248/bpb1978.12.608 . - PubMed
  145. Fremstad D, Jacobsen S, Lunde KM. Influence of serum protein binding on the pharmacokinetics of quinidine in normal and anuric rats. Acta Pharmacol Toxicol (Copenh). 1977;41(2):161–76. https://doi.org/10.1111/j.1600-0773.1977.tb02136.x . - PubMed
  146. Rakhit A, Guentert TW, Holford NH, Verhoeven J, Riegelman S. Pharmacokinetics and pharmacodynamics of quinidine and its metabolite, quinidine-N-oxide, in beagle dogs. Eur J Drug Metab Pharmacokinet. 1984;9(4):315–24. https://doi.org/10.1007/BF03189683 . - PubMed
  147. Dixon CM, Saynor DA, Andrew PD, Oxford J, Bradbury A, Tarbit MH. Disposition of sumatriptan in laboratory animals and humans. Drug Metab Dispos. 1993;21(5):761–9. - PubMed
  148. Yang SH, Suh JH, Lee MG. Pharmacokinetic interaction between tamoxifen and ondansetron in rats: non-competitive (hepatic) and competitive (intestinal) inhibition of tamoxifen metabolism by ondansetron via CYP2D subfamily and 3A1/2. Cancer Chemother Pharmacol. 2010;65(3):407–18. https://doi.org/10.1007/s00280-009-1043-4 . - PubMed
  149. Nadai M, Kato M, Yasui K, Kimura M, Zhao YL, Ueyama J, et al. Lack of effect of aciclovir on metabolism of theophylline and expression of hepatic cytochrome P450 1A2 in rats. Biol Pharm Bull. 2007;30(3):562–8. https://doi.org/10.1248/bpb.30.562 . - PubMed
  150. Saunier C, du Souich P, Hartemann D, Sautegeau A. Theophylline disposition during acute and chronic hypoxia in the conscious dog. Res Commun Chem Pathol Pharmacol. 1987;57(3):291–9. - PubMed
  151. Kuze T, Miyazaki H, Taneike T. Theophylline: pharmacokinetics, metabolism and urinary excretion in dogs. Nihon Yakurigaku Zasshi. 1988;91(5):325–34. https://doi.org/10.1254/fpj.91.325 . - PubMed
  152. Han SY, Choi YH. Pharmacokinetic Interaction between Metformin and Verapamil in Rats: Inhibition of the OCT2-Mediated Renal Excretion of Metformin by Verapamil. Pharmaceutics. 2020;12(5). https://doi.org/10.3390/pharmaceutics12050468 . - PubMed
  153. Maeng HJ, Doan TNK, Yoon IS. Differential regulation of intestinal and hepatic CYP3A by 1alpha,25-dihydroxyvitamin D3: Effects on in vivo oral absorption and disposition of buspirone in rats. Drug Dev Res. 2019;80(3):333–42. https://doi.org/10.1002/ddr.21505 . - PubMed
  154. Lee YS, Kim YW, Kim SG, Lee I, Lee MG, Kang HE. Effects of poloxamer 407-induced hyperlipidemia on the pharmacokinetics of carbamazepine and its 10,11-epoxide metabolite in rats: Impact of decreased expression of both CYP3A1/2 and microsomal epoxide hydrolase. Eur Neuropsychopharmacol. 2012;22(6):431–40. https://doi.org/10.1016/j.euroneuro.2011.10.004 . - PubMed
  155. Levy RH, Lockard JS, Green JR, Friel P, Martis L. Pharmacokinetics of carbamazepine in monkeys following intravenous and oral administration. J Pharm Sci. 1975;64(2):302–7. https://doi.org/10.1002/jps.2600640224 . - PubMed
  156. Peris-Ribera JE, Torres-Molina F, Garcia-Carbonell MC, Aristorena JC, Pla-Delfina JM. Pharmacokinetics and bioavailability of diclofenac in the rat. J Pharmacokinet Biopharm. 1991;19(6):647–65. https://doi.org/10.1007/BF01080872 . - PubMed
  157. Tocco DJ, Breault GO, Zacchei AG, Steelman SL, Perrier CV. Physiological disposition and metabolism of 5-(2',4'-difluorophenyl)salicyclic acid, a new salicylate. Drug Metab Dispos. 1975;3(6):453–66. - PubMed
  158. Dickinson RG, King AR, Verbeeck RK. Elimination of diflunisal as its acyl glucuronide, phenolic glucuronide and sulfate conjugates in bile-exteriorized and intact rats. Clin Exp Pharmacol Physiol. 1989;16(12):913–24. https://doi.org/10.1111/j.1440-1681.1989.tb02402.x . - PubMed
  159. Meuldermans W, Hurkmans R, Swysen E, Hendrickx J, Michiels M, Lauwers W, et al. On the pharmacokinetics of domperidone in animals and man III. Comparative study on the excretion and metabolism of domperidone in rats, dogs and man. Eur J Drug Metab Pharmacokinet. 1981;6(1):49–60. https://doi.org/10.1007/BF03189515 . - PubMed
  160. Lin C, Symchowicz S. Absorption, distribution, metabolism, and excretion of griseofulvin in man and animals. Drug Metab Rev. 1975;4(1):75–95. https://doi.org/10.3109/03602537508993749 . - PubMed
  161. Dietzel K, Beck WS, Schneider HT, Geisslinger G, Brune K. The biliary elimination and enterohepatic circulation of ibuprofen in rats. Pharm Res. 1990;7(1):87–90. https://doi.org/10.1023/a:1015847912059 . - PubMed
  162. Beck WS, Geisslinger G, Engler H, Brune K. Pharmacokinetics of ibuprofen enantiomers in dogs. Chirality. 1991;3(3):165–9. https://doi.org/10.1002/chir.530030304 . - PubMed
  163. Meunier CJ, Verbeeck RK. Glucuronidation kinetics of R,S-ketoprofen in adjuvant-induced arthritic rats. Pharm Res. 1999;16(7):1081-1086. doi: https://doi.org/10.1023/a:1018996018708 . - PubMed
  164. Denissen JF, Grabowski BA, Johnson MK, Buko AM, Kempf DJ, Thomas SB, et al. Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab Dispos. 1997;25(4):489–501. - PubMed
  165. Takada K, Usuda H, Oh-Hashi M, Yoshikawa H, Muranishi S, Tanaka H. Pharmacokinetics of FK-506, a novel immunosuppressant, after intravenous and oral administrations to rats. J Pharmacobiodyn. 1991;14(1):34–42. https://doi.org/10.1248/bpb1978.14.34 . - PubMed
  166. Venkataramanan R, Warty VS, Zemaitis MA, Sanghvi AT, Burckart GJ, Seltman H, et al. Biopharmaceutical aspects of FK-506. Transplant Proc. 1987;19(5 Suppl 6):30–5. - PubMed
  167. Leeson GA, Chan KY, Knapp WC, Biedenbach SA, Wright GJ, Okerholm RA. Metabolic disposition of terfenadine in laboratory animals. Arzneimittel-Forschung. 1982;32(9a):1173–8. - PubMed
  168. Fagerholm U. Prediction of human pharmacokinetics - renal metabolic and excretion clearance. J Pharm Pharmacol. 2007;59(11):1463–71. https://doi.org/10.1211/jpp.59.11.0002 . - PubMed
  169. Srinivas NR. Interspecies scaling of excretory amounts using allometry - retrospective analysis with rifapentine, aztreonam, carumonam, pefloxacin, miloxacin, trovafloxacin, doripenem, imipenem, cefozopran, ceftazidime, linezolid for urinary excretion and rifapentine, cabotegravir, and dolutegravir for fecal excretion. Xenobiotica. 2016;46(9):784–92. https://doi.org/10.3109/00498254.2015.1121554 . - PubMed
  170. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93. https://doi.org/10.1124/dmd.113.054031 . - PubMed
  171. Lombardo F, Waters NJ, Argikar UA, Dennehy MK, Zhan J, Gunduz M, et al. Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 2: clearance. J Clin Pharmacol. 2013;53(2):178–91. https://doi.org/10.1177/0091270012440282 . - PubMed
  172. Mahmood I. Interspecies scaling of renally secreted drugs. Life Sci. 1998;63(26):2365–71. https://doi.org/10.1016/s0024-3205(98)00525-6 . - PubMed
  173. Paine SW, Ménochet K, Denton R, McGinnity DF, Riley RJ. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 2011;39(6):1008–13. https://doi.org/10.1124/dmd.110.037267 . - PubMed
  174. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102(1):34–42. https://doi.org/10.1002/jps.23359 . - PubMed
  175. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, et al. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9(5):1199–212. https://doi.org/10.1021/mp2004912 . - PubMed
  176. Pham-The H, Garrigues T, Bermejo M, Gonzalez-Alvarez I, Monteagudo MC, Cabrera-Perez MA. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm. 2013;10(6):2445–61. https://doi.org/10.1021/mp4000585 . - PubMed
  177. Varma MV, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52(15):4844–52. https://doi.org/10.1021/jm900403j . - PubMed
  178. Cruciani G, Crivori P, Carrupt PA, Testa B. Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. Journal of Molecular Structure: THEOCHEM. 2000;503(1):17–30. https://doi.org/10.1016/S0166-1280(99)00360-7 . - PubMed
  179. Crivori P, Cruciani G, Carrupt PA, Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000;43(11):2204–16. https://doi.org/10.1021/jm990968+ . - PubMed
  180. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6(4):317–24. - PubMed

Publication Types

Grant support