Display options
Share it on

Materials (Basel). 2021 Jun 05;14(11). doi: 10.3390/ma14113099.

Perfusion Decellularization of Extrahepatic Bile Duct Allows Tissue-Engineered Scaffold Generation by Preserving Matrix Architecture and Cytocompatibility.

Materials (Basel, Switzerland)

Yolik Ramírez-Marín, David Eduardo Abad-Contreras, Martha Ustarroz-Cano, Norma S Pérez-Gallardo, Lorena Villafuerte-García, Dulce Maria Puente-Guzmán, Jorge Luna Del Villar-Velasco, Leonardo Alejandro Rodríguez-López, Gonzalo Torres-Villalobos, Miguel Ángel Mercado, Jesús Tapia-Jurado, Francisco Drusso Martínez-García, Martin Conrad Harmsen, M Cristina Piña-Barba, David M Giraldo-Gomez

Affiliations

  1. Program of Medical Specialization General Surgery, Division of Posgraduate Studies, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito de Posgrados, Unidad de Posgrado Edificio "E" 2° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
  2. National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico.
  3. Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
  4. Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio "A" 3° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
  5. Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
  6. Unit of Advanced Medical Simulation, Division of Posgraduate Studies, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito de Posgrados, Unidad de Posgrado Edificio "B" 2° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.
  7. Department of Pathology and Medical Biology, University Medical Center Groningen University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands.
  8. Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio "A" planta baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico.

PMID: 34198787 PMCID: PMC8201334 DOI: 10.3390/ma14113099

Abstract

Reconstruction of bile ducts damaged remains a vexing medical problem. Surgeons have few options when it comes to a long segment reconstruction of the bile duct. Biological scaffolds of decellularized biliary origin may offer an approach to support the replace of bile ducts. Our objective was to obtain an extracellular matrix scaffold derived from porcine extrahepatic bile ducts (dECM-BD) and to analyze its biological and biochemical properties. The efficiency of the tailored perfusion decellularization process was assessed through histology stainings. Results from 4'-6-diamidino-2-phenylindole (DAPI), Hematoxylin and Eosin (H&E) stainings, and deoxyribonucleic acid (DNA) quantification showed proper extracellular matrix (ECM) decellularization with an effectiveness of 98%. Immunohistochemistry results indicate an effective decrease in immunogenic marker as human leukocyte antigens (HLA-A) and Cytokeratin 7 (CK7) proteins. The ECM of the bile duct was preserved according to Masson and Herovici stainings. Data derived from scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed the preservation of the dECM-BD hierarchical structures. Cytotoxicity of dECM-BD was null, with cells able to infiltrate the scaffold. In this work, we standardized a decellularization method that allows one to obtain a natural bile duct scaffold with hierarchical ultrastructure preservation and adequate cytocompatibility.

Keywords: bile duct; decellularization; extracellular matrix (ECM); matrix scaffold

References

  1. J Biosci Bioeng. 2019 Aug;128(2):218-225 - PubMed
  2. Biomaterials. 2015 Aug;61:246-56 - PubMed
  3. Int J Biol Macromol. 2005 Sep 28;36(5):299-304 - PubMed
  4. Biomaterials. 2009 Mar;30(8):1482-91 - PubMed
  5. Ann Thorac Surg. 2013 Sep;96(3):1046-55; discussion 1055-6 - PubMed
  6. Hepatology. 1992 Mar;15(3):411-8 - PubMed
  7. Colloids Surf B Biointerfaces. 2020 Sep;193:111153 - PubMed
  8. Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:588-595 - PubMed
  9. Nat Med. 2017 Aug;23(8):954-963 - PubMed
  10. Hepatology. 2011 Jan;53(1):293-305 - PubMed
  11. J Gastrointest Surg. 2006 Jan;10(1):77-82 - PubMed
  12. Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110200 - PubMed
  13. Skin Res Technol. 2017 Nov;23(4):588-592 - PubMed
  14. J Gastroenterol Hepatol. 2013 Aug;28 Suppl 1:26-32 - PubMed
  15. Biomaterials. 2012 Feb;33(6):1771-81 - PubMed
  16. Parasitol Res. 2013 Mar;112(3):1021-9 - PubMed
  17. J Am Coll Surg. 2004 Aug;199(2):192-7 - PubMed
  18. Biomaterials. 2010 Oct;31(28):7257-65 - PubMed
  19. Biomaterials. 2012 Nov;33(31):7756-64 - PubMed
  20. Surgery. 2009 Oct;146(4):543-52; discussion 552-3 - PubMed
  21. J Mech Behav Biomed Mater. 2015 Mar;55:21-31 - PubMed
  22. J Surg Res. 2013 Jan;179(1):18-21 - PubMed
  23. Biochim Biophys Acta Mol Cell Res. 2020 Apr;1867(4):118658 - PubMed
  24. Ann Transplant. 2012 Apr-Jun;17(2):38-44 - PubMed
  25. Int J Surg. 2015 Aug;20:163-9 - PubMed
  26. Nat Med. 2008 Feb;14(2):213-21 - PubMed
  27. Acta Biomater. 2020 Apr 15;107:115-128 - PubMed
  28. Arch Oral Biol. 2018 Apr;88:67-76 - PubMed
  29. J Heart Lung Transplant. 2014 Mar;33(3):298-308 - PubMed
  30. Cell. 2010 Mar 5;140(5):619-30 - PubMed
  31. Biomed Res Int. 2017;2017:9831534 - PubMed
  32. Anat Rec (Hoboken). 2008 Jun;291(6):653-60 - PubMed
  33. HPB (Oxford). 2011 Aug;13(8):573-8 - PubMed
  34. Annu Rev Biomed Eng. 2011 Aug 15;13:27-53 - PubMed
  35. J Hepatol. 1986;3(3):310-7 - PubMed
  36. Semin Liver Dis. 2008 Aug;28(3):235-46 - PubMed
  37. Stain Technol. 1963 May;38:204-6 - PubMed
  38. World J Surg. 2001 Oct;25(10):1360-5 - PubMed
  39. Biomaterials. 2011 Apr;32(12):3233-43 - PubMed
  40. Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110142 - PubMed
  41. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:930-937 - PubMed
  42. Int J Biol Macromol. 2011 Mar 1;48(2):354-9 - PubMed
  43. J Gastrointest Surg. 2001 May-Jun;5(3):266-74 - PubMed
  44. Biochem Biophys Res Commun. 2013 May 10;434(3):676-80 - PubMed
  45. J Autoimmun. 2020 Feb;107:102372 - PubMed
  46. Eur Cell Mater. 2014 Oct 28;28:335-47 - PubMed
  47. Surg Endosc. 2006 Nov;20(11):1644-7 - PubMed
  48. Acta Biomater. 2014 Dec;10(12):5043-5054 - PubMed
  49. World J Gastroenterol. 2016 Dec 28;22(48):10575-10583 - PubMed
  50. J Hand Surg Br. 1995 Aug;20(4):519-24 - PubMed
  51. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1693-1701 - PubMed
  52. Biomaterials. 2013 Sep;34(28):6760-72 - PubMed

Publication Types

Grant support