Display options
Share it on

PeerJ. 2021 Jun 10;9:e11114. doi: 10.7717/peerj.11114. eCollection 2021.

Methylmercury-induced cytotoxicity and oxidative biochemistry impairment in dental pulp stem cells: the first toxicological findings.

PeerJ

Renata Duarte de Souza-Rodrigues, Bruna Puty, Laís Bonfim, Lygia Sega Nogueira, Priscila Cunha Nascimento, Leonardo Oliveira Bittencourt, Roberta Souza D'Almeida Couto, Carlos Augusto Galvão Barboza, Edivaldo Herculano Corrêa de Oliveira, Marcia Martins Marques, Rafael Rodrigues Lima

Affiliations

  1. Institute of Arts Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil.
  2. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil, Brazil.
  3. Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil.
  4. Faculty of Dentistry, Federal University of Pará (UFPA), Belém, Pará, Brazil.
  5. Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
  6. Graduation Program, School of Dentistry, Ibirapuera University (UNIb), São Paulo, Brazil.

PMID: 34178433 PMCID: PMC8199917 DOI: 10.7717/peerj.11114

Abstract

BACKGROUND: Methylmercury (MeHg) is a potent toxicant able to harm human health, and its main route of contamination is associated with the consumption of contaminated fish and other seafood. Moreover, dental amalgams are also associated with mercury release on human saliva and may contribute to the accumulation of systemic mercury. In this way, the oral cavity seems to be the primary location of exposure during MeHg contaminated food ingestion and dental procedures but there is a lack of literature about its effects on dental tissues and the impact of this toxicity on human health. In this way, this study aimed to analyze the effects of different doses of MeHg on human dental pulp stem cells after short-term exposure.

METHODS: Dental pulp stem cells from human exfoliated deciduous teeth (SHED) were treated with 0.1, 2.5 and 5 µM of MeHg during 24 h. The MeHg effects were assessed by evaluating cell viability with Trypan blue exclusion assay. The metabolic viability was indirectly assessed by MTT reduction assay. In order to evaluate an indicative of antioxidant defense impairment, cells exposed to 0.1 and 5 µM MeHg were tested by measuring glutathione (GSH) level.

RESULTS: It was observed that cell viability decreased significantly after exposure to 2.5 and 5 µM of MeHg, but the metabolic viability only decreased significantly at 5 µM MeHg exposure, accompanied by a significant decrease in GSH levels. These results suggest that an acute exposure of MeHg in concentrations higher than 2.5 µM has cytotoxic effects and reduction of antioxidant capacity on dental pulp stem cells.

© 2021 Souza-Rodrigues et al.

Keywords: Cell metabolism; Cell viability; Dental pulp stem cells; Methylmercury (MeHg); Oxidative stress

Conflict of interest statement

The authors declare that they have no competing interests.

References

  1. Biochim Biophys Acta. 2002 Oct 9;1588(1):94-101 - PubMed
  2. Brain Res. 2007 Feb 2;1131(1):1-10 - PubMed
  3. Toxics. 2018 Aug 09;6(3): - PubMed
  4. Rev Neurol. 2005 Apr 1-15;40(7):441-7 - PubMed
  5. J Dent Res. 1993 Sep;72(9):1320-4 - PubMed
  6. Oxid Med Cell Longev. 2017;2017:5653291 - PubMed
  7. Biochim Biophys Acta Gen Subj. 2019 Dec;1863(12):129285 - PubMed
  8. Metallomics. 2017 Dec 1;9(12):1778-1785 - PubMed
  9. Ann Med. 2017 Dec;49(8):644-651 - PubMed
  10. J Trace Elem Med Biol. 2019 Jan;51:19-27 - PubMed
  11. J Prev Med Public Health. 2012 Nov;45(6):353-63 - PubMed
  12. J Trace Elem Med Biol. 2019 Mar;52:143-150 - PubMed
  13. Basic Clin Pharmacol Toxicol. 2010 Oct;107(4):789-92 - PubMed
  14. Crit Rev Toxicol. 1995;25(1):1-24 - PubMed
  15. Sci Rep. 2018 Jan 24;8(1):1531 - PubMed
  16. Oxid Med Cell Longev. 2016;2016:5137042 - PubMed
  17. Int J Mol Sci. 2019 Mar 06;20(5): - PubMed
  18. Biochem J. 2004 Mar 1;378(Pt 2):373-82 - PubMed
  19. Oxid Med Cell Longev. 2019 Nov 22;2019:8470857 - PubMed
  20. Sci Total Environ. 2019 Mar 1;654:720-734 - PubMed
  21. Biol Trace Elem Res. 2018 Sep;185(1):135-142 - PubMed
  22. Sci Total Environ. 2002 Feb 4;284(1-3):19-25 - PubMed
  23. Ecotoxicol Environ Saf. 2020 Mar 15;191:110159 - PubMed
  24. Stem Cell Res Ther. 2017 Mar 9;8(1):61 - PubMed
  25. Life Sci. 2011 Oct 10;89(15-16):555-63 - PubMed
  26. Ecotoxicol Environ Saf. 2019 Jun 15;174:557-565 - PubMed
  27. Environ Int. 2018 May;114:1-11 - PubMed
  28. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5807-12 - PubMed
  29. J Clin Periodontol. 2018 Jul;45(7):841-850 - PubMed
  30. Stem Cell Rev Rep. 2016 Oct;12(5):511-523 - PubMed
  31. Cytotherapy. 2006;8(4):315-7 - PubMed
  32. Int J Hyg Environ Health. 2002 Apr;205(3):205-11 - PubMed
  33. Toxicol Appl Pharmacol. 1997 May;144(1):156-62 - PubMed
  34. J Trace Elem Med Biol. 2019 Mar;52:100-110 - PubMed
  35. Radiology. 2018 Sep;288(3):799-803 - PubMed
  36. Environ Sci Pollut Res Int. 2015 Aug;22(15):11255-64 - PubMed
  37. Caries Res. 2001 May-Jun;35(3):163-6 - PubMed
  38. Environ Toxicol. 2019 Dec;34(12):1285-1291 - PubMed
  39. Histochem Cell Biol. 2008 Oct;130(4):773-83 - PubMed
  40. Metallomics. 2019 Feb 20;11(2):390-403 - PubMed
  41. Biochim Biophys Acta Gen Subj. 2019 Dec;1863(12):129284 - PubMed
  42. Int J Environ Res Public Health. 2010 Jun;7(6):2666-91 - PubMed

Publication Types