Display options
Share it on

Antioxidants (Basel). 2021 Jun 15;10(6). doi: 10.3390/antiox10060956.

Pimozide and Imipramine Blue Exploit Mitochondrial Vulnerabilities and Reactive Oxygen Species to Cooperatively Target High Risk Acute Myeloid Leukemia.

Antioxidants (Basel, Switzerland)

Zhengqi Wang, Tian Mi, Heath L Bradley, Jonathan Metts, Himalee Sabnis, Wandi Zhu, Jack Arbiser, Kevin D Bunting

Affiliations

  1. Division of Hem/Onc/BMT, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
  2. Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA 30322, USA.
  3. Department of Dermatology, Emory University, Atlanta, GA 30322, USA.
  4. Veterans Administration Medical Center, Atlanta, GA 30322, USA.

PMID: 34203664 PMCID: PMC8232307 DOI: 10.3390/antiox10060956

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease with a high relapse rate. Cytokine receptor targeted therapies are therapeutically attractive but are subject to resistance-conferring mutations. Likewise, targeting downstream signaling pathways has been difficult. Recent success in the development of synergistic combinations has provided new hope for refractory AML patients. While generally not efficacious as monotherapy, BH3 mimetics are very effective in combination with chemotherapy agents. With this in mind, we further explored novel BH3 mimetic drug combinations and showed that pimozide cooperates with mTOR inhibitors and BH3 mimetics in AML cells. The three-drug combination was able to reach cells that were not as responsive to single or double drug combinations. In Flt3-internal tandem duplication (ITD)-positive cells, we previously showed pimozide to be highly effective when combined with imipramine blue (IB). Here, we show that Flt3-ITD

Keywords: BH3 mimetic; Flt3-internal tandem duplication; acute myeloid leukemia; mTOR inhibitor; mitoSox; reactive oxygen species; repurposed drugs

References

  1. Physiol Genomics. 2014 Jul 1;46(13):448-56 - PubMed
  2. J Clin Invest. 2016 Oct 3;126(10):3827-3836 - PubMed
  3. Cold Spring Harb Symp Quant Biol. 2016;81:163-175 - PubMed
  4. Cell Death Differ. 2015 Jul;22(7):1071-80 - PubMed
  5. Oncotarget. 2017 Mar 7;8(10):16220-16232 - PubMed
  6. Genes Cancer. 2012 Jul;3(7-8):503-11 - PubMed
  7. Blood. 2014 Sep 4;124(10):1645-54 - PubMed
  8. Oncotarget. 2015 Apr 20;6(11):9189-205 - PubMed
  9. J Mol Med (Berl). 2013 Dec;91(12):1383-97 - PubMed
  10. Blood. 2011 Mar 24;117(12):3421-9 - PubMed
  11. Blood. 2008 Feb 15;111(4):2101-11 - PubMed
  12. Leukemia. 2010 Aug;24(8):1397-405 - PubMed
  13. Biochim Biophys Acta. 2016 Apr;1863(4):562-71 - PubMed
  14. Sci Transl Med. 2012 Mar 28;4(127):127ra36 - PubMed
  15. Nat Rev Cancer. 2016 Feb;16(2):99-109 - PubMed
  16. J Invest Dermatol. 2016 Oct;136(10):2059-2069 - PubMed
  17. Trends Mol Med. 2021 Apr;27(4):332-344 - PubMed
  18. Cell Metab. 2017 Jul 5;26(1):39-48 - PubMed
  19. Oncotarget. 2015 Oct 13;6(31):32089-103 - PubMed
  20. Cell. 2012 Oct 12;151(2):344-55 - PubMed
  21. Leukemia. 2007 Aug;21(8):1763-72 - PubMed
  22. J Transl Med. 2014 Jun 12;12:166 - PubMed
  23. Leukemia. 2012 Mar;26(3):481-9 - PubMed
  24. Cell Stem Cell. 2018 Jul 05;23(1):86-100.e6 - PubMed
  25. Cancer Discov. 2020 Apr;10(4):568-587 - PubMed
  26. Oncotarget. 2016 Jan 5;7(1):845-59 - PubMed
  27. J Clin Med. 2015 Apr 10;4(4):634-64 - PubMed
  28. Cancer Discov. 2021 Jun;11(6):1582-1599 - PubMed
  29. Leuk Res. 2016 Nov;50:132-140 - PubMed
  30. Cell Death Differ. 2019 Jul;26(7):1316-1331 - PubMed
  31. N Engl J Med. 2015 Sep 17;373(12):1136-52 - PubMed
  32. Cancers (Basel). 2018 Sep 27;10(10): - PubMed
  33. Biochim Biophys Acta. 2011 Jan;1815(1):104-14 - PubMed
  34. Sci Rep. 2017 Jun 30;7(1):4447 - PubMed
  35. Leukemia. 2013 Feb;27(2):260-8 - PubMed
  36. Am J Blood Res. 2014 Sep 05;4(1):20-6 - PubMed
  37. Leukemia. 2019 Apr;33(4):905-917 - PubMed
  38. Cancer Metab. 2021 Apr 21;9(1):17 - PubMed
  39. Blood. 2010 Feb 18;115(7):1416-24 - PubMed

Publication Types

Grant support