Display options
Share it on

J Pain Res. 2021 Jun 28;14:1959-1967. doi: 10.2147/JPR.S302004. eCollection 2021.

The Role of Anti-Nerve Growth Factor Monoclonal Antibodies in the Control of Chronic Cancer and Non-Cancer Pain.

Journal of pain research

Sabrina Bimonte, Marco Cascella, Cira Antonietta Forte, Gennaro Esposito, Arturo Cuomo

Affiliations

  1. Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.

PMID: 34234542 PMCID: PMC8253925 DOI: 10.2147/JPR.S302004

Abstract

Nerve growth factor (NGF) belongs to the neurotrophin family and plays a fundamental role in the endurance of sensory and sympathetic neurons during embryogenesis. NGF, by interacting with tropomyosin receptor kinase A receptor (TrkA), modulates the pain pathway through the enhancement of the neurotrophic and nociceptor functions. Moreover, it has been demonstrated that NGF is upregulated in patients with chronic pain syndromes, which are difficult to treat. Thus, new non-pharmacological approaches, based on the use of different species-specific monoclonal antibodies (mAbs) targeting the NGF pathway, have been tested for the treatment of chronic pain in preclinical and clinical studies. With regard to preclinical investigations, anti-NGF mAbs have been used for the management of osteoarthritis (OA) and chronic low back pain animal models, with encouraging results. Moreover, anti-NGF mAb therapy is effective in animal models of neuropathic cancer pain. As regards patients with OA, although phase II and phase III clinical trials with tanezumab led to pain reduction, the safety was not observed in all these patients. Here, we review the preclinical and clinical studies on anti-NGF mAb therapy in chronic syndromes, dissect the role of NGF in pain transduction, and highlight the use of anti-NGF mAbs in humans.

© 2021 Bimonte et al.

Keywords: chronic pain; monoclonal antibodies; nerve growth factor; neuropathic cancer pain; peripheral sensitization

Conflict of interest statement

Sabrina Bimonte and Marco Cascella are co-first authors for this study. The authors report no conflicts of interest in this work.

References

  1. Lancet. 1989 Sep 2;2(8662):519-22 - PubMed
  2. BMC Musculoskelet Disord. 2017 Nov 3;18(1):428 - PubMed
  3. Spine (Phila Pa 1976). 2014 Jun 1;39(13):E757-62 - PubMed
  4. JAMA. 2019 Jul 2;322(1):37-48 - PubMed
  5. J Pain Res. 2012;5:279-87 - PubMed
  6. Drug Des Devel Ther. 2017 Sep 13;11:2737-2742 - PubMed
  7. N Engl J Med. 2010 Oct 14;363(16):1521-31 - PubMed
  8. Ann Rheum Dis. 2019 May;78(5):672-675 - PubMed
  9. Arthritis Rheumatol. 2017 Apr;69(4):763-773 - PubMed
  10. Pain. 2008 Aug 15;138(1):47-60 - PubMed
  11. Pain. 2010 May;149(2):386-392 - PubMed
  12. Nature. 1989 Jan 26;337(6205):362-4 - PubMed
  13. Cancer Res. 2005 Oct 15;65(20):9426-35 - PubMed
  14. Int J Clin Pract. 2016 Jun;70(6):493-505 - PubMed
  15. J Pain Res. 2020 May 26;13:1223-1241 - PubMed
  16. Pain. 2013 Sep;154(9):1603-1612 - PubMed
  17. Osteoarthritis Cartilage. 2019 Mar;27(3):484-492 - PubMed
  18. Pain. 2011 Nov;152(11):2564-2574 - PubMed
  19. Cell Commun Signal. 2020 Apr 20;18(1):66 - PubMed
  20. Exp Anim. 2016 Nov 1;65(4):337-343 - PubMed
  21. J Neurosci. 1993 May;13(5):2136-48 - PubMed
  22. Nat Rev Rheumatol. 2021 Jan;17(1):34-46 - PubMed
  23. Osteoarthritis Cartilage. 2015 Sep;23(9):1605-12 - PubMed
  24. Pain. 2016 Jun;157(6):1239-1247 - PubMed
  25. J Pain Res. 2019 Feb 19;12:711-714 - PubMed
  26. BioDrugs. 2008;22(6):349-59 - PubMed
  27. Ann Rheum Dis. 2015 Jun;74(6):1202-11 - PubMed
  28. BMC Vet Res. 2015 Apr 30;11:101 - PubMed
  29. Pain. 2005 May;115(1-2):128-41 - PubMed
  30. Ann Rheum Dis. 2020 Jun;79(6):800-810 - PubMed
  31. Pain. 2013 Jul;154(7):1009-21 - PubMed
  32. Behav Pharmacol. 2016 Sep;27(6):528-35 - PubMed
  33. J Pain Res. 2018 Jan 08;11:151-164 - PubMed
  34. Ann Rheum Dis. 2017 Jan;76(1):295-302 - PubMed
  35. Pain Physician. 2014 Jan-Feb;17(1):E45-60 - PubMed
  36. Curr Opin Rheumatol. 2017 Jan;29(1):110-118 - PubMed
  37. Nat Biotechnol. 2011 Mar;29(3):173-4 - PubMed
  38. Trends Pharmacol Sci. 2006 Feb;27(2):85-91 - PubMed
  39. Mol Pain. 2017 Jan-Dec;13:1744806917740233 - PubMed
  40. Neuroscience. 2010 Dec 1;171(2):588-98 - PubMed
  41. Ann Rheum Dis. 2014 Sep;73(9):1665-72 - PubMed
  42. Pain. 2014 Sep;155(9):1793-1801 - PubMed
  43. Drugs. 2014 Apr;74(6):619-26 - PubMed
  44. Nature. 2001 Sep 13;413(6852):203-10 - PubMed
  45. Semin Arthritis Rheum. 2020 Jun;50(3):387-393 - PubMed
  46. J Rheumatol. 2014 Nov;41(11):2249-59 - PubMed
  47. Mol Cancer Ther. 2011 Sep;10(9):1667-76 - PubMed
  48. Pain. 2019 Jan;160(1):151-159 - PubMed
  49. J Pain. 2012 Aug;13(8):790-8 - PubMed
  50. Arthritis Rheumatol. 2016 Feb;68(2):382-91 - PubMed
  51. Trends Cell Biol. 2004 Jul;14(7):395-9 - PubMed
  52. Osteoarthritis Cartilage. 2015 Jun;23(6):925-32 - PubMed
  53. Handb Exp Pharmacol. 2015;227:57-77 - PubMed
  54. Arthritis Rheumatol. 2019 Nov;71(11):1824-1834 - PubMed
  55. Osteoarthritis Cartilage. 2016 Sep;24(9):1587-95 - PubMed
  56. Molecules. 2015 Jun 09;20(6):10657-88 - PubMed
  57. Annu Rev Neurosci. 2001;24:677-736 - PubMed
  58. Anesthesiology. 2011 Jul;115(1):189-204 - PubMed
  59. Ann Rheum Dis. 2016 Jun;75(6):1246-54 - PubMed
  60. Knee Surg Sports Traumatol Arthrosc. 2013 Mar;21(3):540-9 - PubMed
  61. Pain. 2017 Apr;158(4):605-617 - PubMed
  62. Ann Rheum Dis. 2016 Dec;75(12):2133-2141 - PubMed
  63. Vet Rec. 2019 Jan 5;184(1):23 - PubMed
  64. Behav Pharmacol. 2019 Feb;30(1):79-88 - PubMed

Publication Types