Display options
Share it on

iScience. 2021 Jun 10;24(7):102712. doi: 10.1016/j.isci.2021.102712. eCollection 2021 Jul 23.

Skeletal muscle proteomes reveal downregulation of mitochondrial proteins in transition from prediabetes into type 2 diabetes.

iScience

Tiina Öhman, Jaakko Teppo, Neeta Datta, Selina Mäkinen, Markku Varjosalo, Heikki A Koistinen

Affiliations

  1. University of Helsinki, Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, 00014 Helsinki, Finland.
  2. University of Helsinki, Drug Research Program, Faculty of Pharmacy, 00014 Helsinki, Finland.
  3. University of Helsinki, Department of Medicine, Helsinki University Hospital, Haartmaninkatu 4, PO BOX 340, 00029 HUS, Helsinki, Finland.
  4. Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland.

PMID: 34235411 PMCID: PMC8246593 DOI: 10.1016/j.isci.2021.102712

Abstract

Skeletal muscle insulin resistance is a central defect in the pathogenesis of type 2 diabetes (T2D). Here, we analyzed skeletal muscle proteome in 148 vastus lateralis muscle biopsies obtained from men covering all glucose tolerance phenotypes: normal, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and T2D. Skeletal muscle proteome was analyzed by a sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics technique. Our data indicate a downregulation in several proteins involved in mitochondrial electron transport or respiratory chain complex assembly already in IFG and IGT muscles, with most profound decreases observed in T2D. Additional phosphoproteomic analysis reveals altered phosphorylation in several signaling pathways in IFG, IGT, and T2D muscles, including those regulating glucose metabolic processes, and the structure of muscle cells. These data reveal several alterations present in skeletal muscle already in prediabetes and highlight impaired mitochondrial energy metabolism in the trajectory from prediabetes into T2D.

© 2021 The Author(s).

Keywords: Diabetology; Molecular biology; Proteomics

Conflict of interest statement

The authors declare no competing interests.

References

  1. J Mol Biol. 2011 Dec 2;414(3):413-26 - PubMed
  2. Biochem J. 2000 Dec 1;352 Pt 2:267-76 - PubMed
  3. Nat Protoc. 2009;4(1):44-57 - PubMed
  4. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71 - PubMed
  5. World J Diabetes. 2010 May 15;1(2):36-47 - PubMed
  6. J Biol Chem. 2003 Mar 21;278(12):10436-42 - PubMed
  7. Proteomes. 2016 Feb 04;4(1): - PubMed
  8. Mol Syst Biol. 2016 Oct 20;12(10):883 - PubMed
  9. Nat Genet. 2003 Jul;34(3):267-73 - PubMed
  10. J Clin Invest. 1985 Jul;76(1):149-55 - PubMed
  11. Mamm Genome. 1997 Sep;8(9):695-6 - PubMed
  12. J Biol Chem. 2019 Jan 25;294(4):1161-1172 - PubMed
  13. J Cell Biol. 1997 Aug 25;138(4):821-32 - PubMed
  14. Diabetologia. 1985 Jul;28(7):412-9 - PubMed
  15. Mol Med Rep. 2015 May;11(5):3337-43 - PubMed
  16. Diabetologia. 2017 Oct;60(10):2052-2065 - PubMed
  17. Exp Mol Med. 2018 Sep 28;50(9):1-14 - PubMed
  18. Cell. 2008 Jul 11;134(1):112-23 - PubMed
  19. Diabetes. 1981 Dec;30(12):1000-7 - PubMed
  20. Nat Rev Endocrinol. 2018 Feb;14(2):88-98 - PubMed
  21. Mol Cell Proteomics. 2007 Sep;6(9):1638-55 - PubMed
  22. Diabetes Metab Res Rev. 2008 Oct;24(7):554-62 - PubMed
  23. Am J Physiol Endocrinol Metab. 2019 Feb 1;316(2):E268-E285 - PubMed
  24. Nat Protoc. 2013 Mar;8(3):461-80 - PubMed
  25. N Engl J Med. 1999 Jul 22;341(4):240-6 - PubMed
  26. Skelet Muscle. 2011 Feb 01;1(1):6 - PubMed
  27. J Proteome Res. 2009 Nov;8(11):4954-65 - PubMed
  28. J Proteome Res. 2015 Dec 4;14(12):5131-43 - PubMed
  29. Diabetologia. 2012 Apr;55(4):1114-27 - PubMed
  30. Cell Metab. 2013 Feb 5;17(2):162-84 - PubMed
  31. Nucleic Acids Res. 2002 Dec 1;30(23):5074-86 - PubMed
  32. Diabetes. 2017 Jun;66(6):1432-1442 - PubMed
  33. Cell Metab. 2021 May 4;33(5):957-970.e6 - PubMed
  34. Nat Biotechnol. 2008 Dec;26(12):1367-72 - PubMed
  35. J Physiol. 2017 Aug 1;595(15):5209-5226 - PubMed
  36. Cell Calcium. 2016 Sep;60(3):172-9 - PubMed
  37. N Engl J Med. 1989 Aug 10;321(6):337-43 - PubMed
  38. J Clin Invest. 2011 Jun;121(6):2457-61 - PubMed
  39. Mol Cell Proteomics. 2012 Jun;11(6):O111.016717 - PubMed
  40. Diabetes. 2013 Apr;62(4):1036-40 - PubMed
  41. Diabetes Care. 2015 Jun;38(6):1154-60 - PubMed
  42. Diabetes. 2013 Apr;62(4):1032-5 - PubMed
  43. Diabetologia. 1992 Feb;35(2):143-7 - PubMed
  44. J Proteome Res. 2011 Apr 1;10(4):1794-805 - PubMed
  45. Nucleic Acids Res. 2010 Jan;38(1):279-98 - PubMed
  46. Diabetes Care. 2018 Jan;41(Suppl 1):S7-S12 - PubMed
  47. Diabetes. 2010 Jan;59(1):33-42 - PubMed
  48. Hum Mutat. 2019 May;40(5):499-515 - PubMed
  49. Endocr Rev. 2010 Jun;31(3):364-95 - PubMed
  50. Diabetes Metab Res Rev. 2001 Sep-Oct;17(5):391-5 - PubMed
  51. Cell Metab. 2017 Mar 7;25(3):581-592 - PubMed
  52. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  53. Nat Methods. 2014 Jun;11(6):603-4 - PubMed
  54. Nat Commun. 2016 Jun 29;7:11764 - PubMed
  55. DNA Cell Biol. 2011 Jun;30(6):419-29 - PubMed
  56. Cell Metab. 2020 Nov 3;32(5):844-859.e5 - PubMed
  57. Mol Cell Proteomics. 2015 Apr;14(4):841-53 - PubMed
  58. Nature. 2019 Aug;572(7769):323-328 - PubMed
  59. Mol Omics. 2021 Feb 1;17(1):29-42 - PubMed
  60. Med Sci Sports Exerc. 2013 Jun;45(6):1069-76 - PubMed

Publication Types