Display options
Share it on

Ann Neurol. 2021 Nov;90(5):699-710. doi: 10.1002/ana.26164. Epub 2021 Jul 20.

Changing Gears - DBS For Dopaminergic Desensitization in Parkinson's Disease?.

Annals of neurology

Daniel Weiss, Jens Volkmann, Alfonso Fasano, Andrea Kühn, Paul Krack, Günther Deuschl

Affiliations

  1. Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
  2. Department of Neurology, University Hospital and Julius-Maximilian-University, Würzburg, Germany.
  3. Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada.
  4. Division of Neurology, University of Toronto, Toronto, ON, Canada.
  5. Krembil Brain Institute, Toronto, ON, Canada.
  6. Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
  7. Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
  8. Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.
  9. Department of Neurology, University Hospital Schleswig Holstein (UKSH), Christian-Albrechts-University Kiel, Kiel, Germany.

PMID: 34235776 DOI: 10.1002/ana.26164

Abstract

In Parkinson's disease, both motor and neuropsychiatric complications unfold as a consequence of both incremental striatal dopaminergic denervation and intensifying long-term dopaminergic treatment. Together, this leads to 'dopaminergic sensitization' steadily increasing motor and behavioral responses to dopaminergic medication that result in the detrimental sequalae of long-term dopaminergic treatment. We review the clinical presentations of 'dopaminergic sensitization', including rebound off and dyskinesia in the motor domain, and neuropsychiatric fluctuations and behavioral addictions with impulse control disorders and dopamine dysregulation syndrome in the neuropsychiatric domain. We summarize state-of-the-art deep brain stimulation, and show that STN-DBS allows dopaminergic medication to be tapered, thus supporting dopaminergic desensitization. In this framework, we develop our integrated debatable viewpoint of "changing gears", that is we suggest rethinking earlier use of subthalamic nucleus deep brain stimulation, when the first clinical signs of dopaminergic motor or neuropsychiatric complications emerge over the steadily progressive disease course. In this sense, subthalamic deep brain stimulation may help reduce longitudinal motor and neuropsychiatric symptom expression - importantly, not by neuroprotection but by supporting dopaminergic desensitization through postoperative medication reduction. Therefore, we suggest considering STN-DBS early enough before patients encounter potentially irreversible psychosocial consequences of dopaminergic complications, but importantly not before a patient shows first clinical signs of dopaminergic complications. We propose to consider neuropsychiatric dopaminergic complications as a new inclusion criterion in addition to established motor criteria, but this concept will require validation in future clinical trials. ANN NEUROL 2021;90:699-710.

© 2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

References

  1. Weintraub D, Mamikonyan E. The neuropsychiatry of Parkinson disease: a perfect storm. Am J Geriatr Psychiatry 2019;27:998-1018. - PubMed
  2. Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson's disease. Mov Disord 2011;26:399-406. - PubMed
  3. Bereau M, Fleury V, Bouthour W, et al. Hyperdopaminergic behavioral spectrum in Parkinson's disease: a review. Rev Neurol 2018;174:653-663. - PubMed
  4. Stoessl AJ. Central pharmacokinetics of levodopa: lessons from imaging studies. Mov Disord 2015;30:73-79. - PubMed
  5. Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson's disease. N Engl J Med 2004;351:2498-2508. - PubMed
  6. Santin MDN, Voulleminot P, Vrillon A, et al. Impact of subthalamic deep brain stimulation on impulse control disorders in Parkinson's disease: a prospective study. Mov Disord 2021;36:750-757. - PubMed
  7. Lhommee E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. Brain 2012;135:1463-1477. - PubMed
  8. Lhommee E, Wojtecki L, Czernecki V, et al. Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson's disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol 2018;17:223-231. - PubMed
  9. Post RM, Rose H. Increasing effects of repetitive cocaine administration in the rat. Nature 1976;260:731-732. - PubMed
  10. Ungless MA, Whistler JL, Malenka RC, Bonci A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001;411:583-587. - PubMed
  11. Evans AH, Pavese N, Lawrence AD, et al. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 2006;59:852-858. - PubMed
  12. Steeves TD, Miyasaki J, Zurowski M, et al. Increased striatal dopamine release in parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 2009;132:1376-1385. - PubMed
  13. Calabresi P, Di Filippo M, Ghiglieri V, et al. Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurol 2010;9:1106-1117. - PubMed
  14. Bejjani BP, Arnulf I, Demeret S, et al. Levodopa-induced dyskinesias in Parkinson's disease: is sensitization reversible? Ann Neurol 2000;47:655-658. - PubMed
  15. Castrioto A, Kistner A, Klinger H, et al. Psychostimulant effect of levodopa: reversing sensitisation is possible. J Neurol Neurosurg Psychiatry 2013;84:18-22. - PubMed
  16. Miller DW, Abercrombie ED. Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 1999;72:1516-1522. - PubMed
  17. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 2008;9:665-677. - PubMed
  18. Nicholas AP. Levodopa-induced hyperactivity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Mov Disord 2007;22:99-104. - PubMed
  19. Rylander D, Parent M, O'Sullivan SS, et al. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 2010;68:619-628. - PubMed
  20. Rajput AH, Fenton M, Birdi S, Macaulay R. Is levodopa toxic to human substantia nigra? Mov Disord 1997;12:634-638. - PubMed
  21. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study. Brain 2000;123:2297-2305. - PubMed
  22. Evans JR, Mason SL, Williams-Gray CH, et al. The natural history of treated Parkinson's disease in an incident, community based cohort. J Neurol Neurosurg Psychiatry 2011;82:1112-1118. - PubMed
  23. de la Fuente-Fernandez R, Sossi V, Huang Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain 2004;127:2747-2754. - PubMed
  24. Cilia R, Akpalu A, Sarfo FS, et al. The modern pre-levodopa era of Parkinson's disease: insights into motor complications from sub-Saharan Africa. Brain 2014;137:2731-2742. - PubMed
  25. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 2001;16:448-458. - PubMed
  26. Verschuur CVM, Suwijn SR, Boel JA, et al. Randomized delayed-start trial of levodopa in Parkinson's disease. N Engl J Med 2019;380:315-324. - PubMed
  27. Sokoloff P, Giros B, Martres MP, et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990;347:146-151. - PubMed
  28. Bordet R, Ridray S, Carboni S, et al. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 1997;94:3363-3367. - PubMed
  29. de Bie RMA, Clarke CE, Espay AJ, et al. Initiation of pharmacological therapy in Parkinson's disease: when, why, and how. Lancet Neurol 2020;19:452-461. - PubMed
  30. Martinez-Fernandez R, Schmitt E, Martinez-Martin P, Krack P. The hidden sister of motor fluctuations in Parkinson's disease: a review on nonmotor fluctuations. Mov Disord 2016;31:1080-1094. - PubMed
  31. Warren Olanow C, Kieburtz K, Rascol O, et al. Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson's disease. Mov Disord 2013;28:1064-1071. - PubMed
  32. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol 2006;63:1756-1760. - PubMed
  33. Katzenschlager R, Head J, Schrag A, et al. Fourteen-year final report of the randomized PDRG-UKtrial comparing three initial treatments in PD. Neurology 2008;71:474-480. - PubMed
  34. Fox SH, Lang AE. Don't delay, start today': delaying levodopa does not delay motor complications. Brain 2014;137:2628-2630. - PubMed
  35. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 2010;67:589-595. - PubMed
  36. Smith KM, Xie SX, Weintraub D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J Neurol Neurosurg Psychiatry 2016;87:864-870. - PubMed
  37. Riley DE, Lang AE. The spectrum of levodopa-related fluctuations in Parkinson's disease. Neurology 1993;43:1459-1464. - PubMed
  38. Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctuations in Parkinson's disease: frequent and disabling. Neurology 2002;59:408-413. - PubMed
  39. Martinez-Fernandez R, Pelissier P, Quesada JL, et al. Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson's disease. J Neurol Neurosurg Psychiatry 2016;87:311-318. - PubMed
  40. Maricle RA, Nutt JG, Valentine RJ, Carter JH. Dose-response relationship of levodopa with mood and anxiety in fluctuating Parkinson's disease: a double-blind, placebo-controlled study. Neurology 1995;45:1757-1760. - PubMed
  41. Weintraub D. Impulse control disorders in Parkinson's disease: a 20-year odyssey. Mov Disord 2019;34:447-452. - PubMed
  42. Samuel M, Ceballos-Baumann AO, Turjanski N, et al. Pallidotomy in Parkinson's disease increases supplementary motor area and prefrontal activation during performance of volitional movements an H2(15)O PET study. Brain 1997;120:1301-1313. - PubMed
  43. Corvol JC, Artaud F, Cormier-Dequaire F, et al. Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology 2018;91:e189-e201. - PubMed
  44. Limotai N, Oyama G, Go C, et al. Addiction-like manifestations and Parkinson's disease: a large single center 9-year experience. Int J Neurosci 2012;122:145-153. - PubMed
  45. Giovannoni G, O'Sullivan JD, Turner K, et al. Hedonistic homeostatic dysregulation in patients with Parkinson's disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 2000;68:423-428. - PubMed
  46. Lawrence AD, Evans AH, Lees AJ. Compulsive use of dopamine replacement therapy in Parkinson's disease: reward systems gone awry? Lancet Neurol 2003;2:595-604. - PubMed
  47. Eusebio A, Witjas T, Cohen J, et al. Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson's disease. J Neurol Neurosurg Psychiatry 2013;84:868-874. - PubMed
  48. O'Sullivan SS, Evans AH, Lees AJ. Dopamine dysregulation syndrome: an overview of its epidemiology, mechanisms and management. CNS Drugs 2009;23:157-170. - PubMed
  49. Deuschl G, Herzog J, Kleiner-Fisman G, et al. Deep brain stimulation: postoperative issues. Mov Disord 2006;21:S219-S237. - PubMed
  50. Okun MS, Gallo BV, Mandybur G, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol 2012;11:140-149. - PubMed
  51. Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med 2013;368:610-622. - PubMed
  52. Vitek JL, Jain R, Chen L, et al. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson's disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurol 2020;19:491-501. - PubMed
  53. Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009;301:63-73. - PubMed
  54. Williams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 2010;9:581-591. - PubMed
  55. Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol 2019;15:234-242. - PubMed
  56. Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep brain stimulation in movement disorders: from experimental surgery to evidence-based therapy. Mov Disord 2019;34:1795-1810. - PubMed
  57. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 2006;355:896-908. - PubMed
  58. Deuschl G, Follett KA, Luo P, et al. Comparing two randomized deep brain stimulation trials for Parkinson's disease. J Neurosurg 2019;5:1-9. - PubMed
  59. Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med 2010;362:2077-2091. - PubMed
  60. Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol 2005;62:1250-1255. - PubMed
  61. Charles D, Konrad PE, Neimat JS, et al. Subthalamic nucleus deep brain stimulation in early stage Parkinson's disease. Parkinsonism Relat Disord 2014;20:731-737. - PubMed
  62. Hacker ML, Turchan M, Heusinkveld LE, et al. Deep brain stimulation in early-stage Parkinson disease: five-year outcomes. Neurology 2020;95:e393-e401. - PubMed
  63. Sidiropoulos C. Reader response: deep brain stimulation in early-stage Parkinson disease: five-year outcomes. Neurology 2021;96:591-592. - PubMed
  64. Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease. J Neurol Neurosurg Psychiatry 2004;75:834-839. - PubMed
  65. Abbes M, Lhommee E, Thobois S, et al. Subthalamic stimulation and neuropsychiatric symptoms in Parkinson's disease: results from a long-term follow-up cohort study. J Neurol Neurosurg Psychiatry 2018;89:836-843. - PubMed
  66. Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol 2008;7:605-614. - PubMed
  67. Troster AI, Jankovic J, Tagliati M, et al. Neuropsychological outcomes from constant current deep brain stimulation for Parkinson's disease. Mov Disord 2017;32:433-440. - PubMed
  68. Charles PD, Van Blercom N, Krack P, et al. Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology 2002;59:932-934. - PubMed
  69. Ory-Magne F, Brefel-Courbon C, Simonetta-Moreau M, et al. Does ageing influence deep brain stimulation outcomes in Parkinson's disease? Mov Disord 2007;22:1457-1463. - PubMed
  70. Smeding HM, Speelman JD, Huizenga HM, et al. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson's disease. J Neurol Neurosurg Psychiatry 2011;82:754-760. - PubMed
  71. Geraedts VJ, Feleus S, Marinus J, et al. What predicts quality of life after STN DBS in Parkinson's disease? A systematic review. Eur J Neurol 2020;27:419-428. - PubMed
  72. Witt K, Daniels C, Krack P, et al. Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson's disease. J Neurol Sci 2011;310:261-266. - PubMed
  73. Odekerken VJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013;12:37-44. - PubMed
  74. Funkiewiez A, Ardouin C, Krack P, et al. Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson's disease. Mov Disord 2003;18:524-530. - PubMed
  75. Witjas T, Kaphan E, Regis J, et al. Effects of chronic subthalamic stimulation on nonmotor fluctuations in Parkinson's disease. Mov Disord 2007;22:1729-1734. - PubMed
  76. Amstutz D, Paschen S, Lachenmayer ML, et al. Management of Impulse Control Disorders with subthalamic nucleus deep brain stimulation in Parkinson's disease. CNS Neurol Disord Drug Targets 2020;19:611-617. - PubMed
  77. Witjas T, Baunez C, Henry JM, et al. Addiction in Parkinson's disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 2005;20:1052-1055. - PubMed
  78. Ardouin C, Voon V, Worbe Y, et al. Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation. Mov Disord 2006;21:1941-1946. - PubMed
  79. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Management of impulse control disorders in Parkinson's disease: controversies and future approaches. Mov Disord 2015;30:150-159. - PubMed
  80. Moum SJ, Price CC, Limotai N, et al. Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome. PLoS One 2012;7:e29768. - PubMed
  81. Ballanger B, van Eimeren T, Moro E, et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 2009;66:817-824. - PubMed
  82. Castrioto A, Lhommee E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol 2014;13:287-305. - PubMed
  83. Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain 2010;133:1111-1127. - PubMed
  84. Maillet A, Krack P, Lhommee E, et al. The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson's disease. Brain 2016;139:2486-2502. - PubMed
  85. Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009;65:586-595. - PubMed
  86. Okun MS, Wu SS, Fayad S, et al. Acute and chronic mood and apathy outcomes from a randomized study of unilateral STN and GPi DBS. PLoS One 2014;9:e114140. - PubMed
  87. Zoon TJC, van Rooijen G, Balm G, et al. Apathy induced by subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis. Mov Disord 2021;36:317-326. - PubMed
  88. Wang Y, Li Y, Zhang X, Xie A. Apathy following bilateral deep brain stimulation of subthalamic nucleus in Parkinson's disease: a meta-analysis. Parkinson's Dis 2018;2018:9756468. - PubMed
  89. Thobois S, Lhommee E, Klinger H, et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 2013;136:1568-1577. - PubMed
  90. Boon LI, Potters WV, Zoon TJC, et al. Structural and functional correlates of subthalamic deep brain stimulation-induced apathy in Parkinson's disease. Brain Stimul 2020;14:192-201. - PubMed
  91. Czernecki V, Pillon B, Houeto JL, et al. Does bilateral stimulation of the subthalamic nucleus aggravate apathy in Parkinson's disease? J Neurol Neurosurg Psychiatry 2005;76:775-779. - PubMed
  92. Ricciardi L, Morgante L, Epifanio A, et al. Stimulation of the subthalamic area modulating movement and behavior. Parkinsonism Relat Disord 2014;20:1298-1300. - PubMed
  93. Bejjani B, Damier P, Arnulf I, et al. Pallidal stimulation for Parkinson's disease. Two targets? Neurology 1997;49:1564-1569. - PubMed
  94. Bouthour W, Megevand P, Donoghue J, et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat Rev Neurol 2019;15:343-352. - PubMed
  95. Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson's disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 2015;14:518-531. - PubMed
  96. Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson's disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 2014;13:141-149. - PubMed
  97. Katzenschlager R, Poewe W, Rascol O, et al. Apomorphine subcutaneous infusion in patients with Parkinson's disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2018;17:749-759. - PubMed
  98. Barbosa P, Lees AJ, Magee C, et al. A retrospective evaluation of the frequency of impulsive compulsive behaviors in Parkinson's disease patients treated with continuous waking day Apomorphine pumps. Mov Disord Clin Pract 2017;4:323-328. - PubMed
  99. Catalan MJ, Molina-Arjona JA, Mir P, et al. Improvement of impulse control disorders associated with levodopa-carbidopa intestinal gel treatment in advanced Parkinson's disease. J Neurol 2018;265:1279-1287. - PubMed
  100. Schuepbach WMM, Tonder L, Schnitzler A, et al. Quality of life predicts outcome of deep brain stimulation in early Parkinson disease. Neurology 2019;92:e1109-e1120. - PubMed

Publication Types