Display options
Share it on

J Clin Med. 2021 Jun 22;10(13). doi: 10.3390/jcm10132748.

MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study.

Journal of clinical medicine

Rafael Alfaro, Isabel Legaz, Victor Jimenez-Coll, Jaouad El Kaaoui El Band, Helios Martínez-Banaclocha, José Antonio Galián, Antonio Parrado, Anna Mrowiec, Carmen Botella, María Rosa Moya-Quiles, Francisco Boix, Jesús de la Peña-Moral, Alfredo Minguela, Santiago Llorente, Manuel Muro

Affiliations

  1. Immunology Service, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
  2. Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
  3. Pathology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain.
  4. Nephrology Services, University Clinical Hospital, Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30100 Murcia, Spain.

PMID: 34206682 PMCID: PMC8268834 DOI: 10.3390/jcm10132748

Abstract

BACKGROUND: The kidney allograft biopsy is considered the gold standard for rejection diagnosis but is invasive and could be indeterminate. Several publications point to the role of miRNA expression in suggesting its involvement in the acceptance or rejection of organ transplantation. This study aimed to analyze microRNAs involved in the differentiation and activation of B and T lymphocytes from kidney transplant (KT) patients' peripheral blood leukocytes to be used as biomarkers of acute renal rejection (AR).

METHODS: A total of 15 KT patients with and without acute rejection (AR/NAR) were analyzed and quantified by miRNA PCR array. A total of 84 miRNAs related to lymphocyte differentiation and activation B and T were studied. The functions and biological pathways were analyzed to predict the potential targets of differential expressed miRNAs.

RESULTS: Six miRNA were increased in the AR group (miR-191-5p, miR-223-3p, miR-346, miR-423-5p, miR-574-3p, and miR-181d) and miR-150-5p was increased in the NAR group. In silico studies showed a total of 2603 target genes for the increased miRNAs in AR, while for the decrease miRNA, a total of 1107 target-potential genes were found.

CONCLUSIONS: Our results show that KT with AR shows a decrease in miR-150-5p expression compared to NAR, suggesting that the decrease in miR-150-5p could be related to an increased MBD6 whose deregulation could have clinical consequences.

Keywords: forensic pathology; gene expression; kidney transplant; miRNA; miRNA PCR array; rejection

References

  1. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205 - PubMed
  2. Clin Immunol. 2012 Jul;144(1):26-31 - PubMed
  3. Curr Opin Organ Transplant. 2019 Aug;24(4):411-415 - PubMed
  4. Exp Ther Med. 2018 Nov;16(5):4296-4302 - PubMed
  5. PLoS One. 2018 Aug 13;13(8):e0201925 - PubMed
  6. Cell. 2004 Jan 23;116(2):281-97 - PubMed
  7. Clin Lab Med. 2019 Mar;39(1):125-143 - PubMed
  8. Semin Dial. 2007 Jan-Feb;20(1):40-9 - PubMed
  9. Nat Rev Genet. 2015 Jul;16(7):421-33 - PubMed
  10. Immunity. 2007 Dec;27(6):847-59 - PubMed
  11. Transpl Immunol. 2015 Sep;33(1):1-6 - PubMed
  12. Transplantation. 2015 Sep;99(9):1882-93 - PubMed
  13. Cell. 2007 Oct 5;131(1):146-59 - PubMed
  14. Nucleic Acids Res. 2017 Sep 19;45(16):9290-9301 - PubMed
  15. Am J Transplant. 2018 Feb;18(2):293-307 - PubMed
  16. Med J Islam Repub Iran. 2016 Mar 05;30:338 - PubMed
  17. Kidney Int. 2005 Jun;67(6):2089-100 - PubMed
  18. PLoS One. 2014 Jul 16;9(7):e102259 - PubMed
  19. Transplantation. 2013 Mar 27;95(6):835-41 - PubMed
  20. Cell Mol Life Sci. 2013 Feb;70(4):711-28 - PubMed
  21. J Biol Chem. 2009 Jun 26;284(26):17775-82 - PubMed
  22. Sci Rep. 2019 Mar 5;9(1):3584 - PubMed
  23. Am J Transplant. 2012 Oct;12(10):2710-8 - PubMed
  24. Kidney Int. 2012 Apr;81(7):628-39 - PubMed
  25. Cell Death Dis. 2017 Jul 27;8(7):e2958 - PubMed
  26. Mol Diagn Ther. 2016 Dec;20(6):509-518 - PubMed
  27. Cancer Prev Res (Phila). 2012 Mar;5(3):492-497 - PubMed
  28. EBioMedicine. 2019 Apr;42:41 - PubMed
  29. Biomed Pharmacother. 2018 Jan;97:511-517 - PubMed
  30. Curr Opin Organ Transplant. 2019 Feb;24(1):103-110 - PubMed
  31. Front Immunol. 2018 Jan 31;9:57 - PubMed
  32. Mol Med. 2018 Oct 17;24(1):54 - PubMed
  33. Kidney Blood Press Res. 2012;35(3):182-91 - PubMed
  34. BMC Genomics. 2006 Jul 03;7:164 - PubMed
  35. Nature. 2005 Sep 15;437(7057):376-80 - PubMed
  36. PLoS One. 2013 Sep 26;8(9):e75348 - PubMed
  37. Leukemia. 2011 Aug;25(8):1324-34 - PubMed
  38. Ann Intern Med. 2003 Jul 15;139(2):137-47 - PubMed
  39. Biochim Biophys Acta. 2010 Nov;1803(11):1231-43 - PubMed
  40. Front Immunol. 2019 Mar 29;10:539 - PubMed
  41. Am J Transplant. 2014 May;14(5):1164-72 - PubMed
  42. J Am Soc Nephrol. 2012 Apr;23(4):597-606 - PubMed
  43. Oncol Lett. 2015 Jul;10(1):11-16 - PubMed
  44. J Mol Diagn. 2013 Sep;15(5):695-705 - PubMed
  45. Exp Hematol. 2016 Jul;44(7):624-634.e1 - PubMed
  46. Lab Invest. 2009 Jun;89(6):708-16 - PubMed
  47. Xenotransplantation. 2019 Mar;26(2):e12474 - PubMed
  48. Sci Rep. 2015 Nov 09;5:16399 - PubMed
  49. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  50. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5330-5 - PubMed
  51. Immunity. 2009 May;30(5):744-52 - PubMed
  52. OMICS. 2014 Nov;18(11):682-95 - PubMed
  53. Immunology. 2008 Dec;125(4):570-90 - PubMed
  54. Eur Heart J. 2014 Dec 1;35(45):3194-202 - PubMed

Publication Types

Grant support