Display options
Share it on

Viruses. 2021 Jun 18;13(6). doi: 10.3390/v13061166.

Virus Adaptation Following Experimental Infection of Chickens with a Domestic Duck Low Pathogenic Avian Influenza Isolate from the 2017 USA H7N9 Outbreak Identifies Polymorphic Mutations in Multiple Gene Segments.

Viruses

Klaudia Chrzastek, Karen Segovia, Mia Torchetti, Mary Lee Killian, Mary Pantin-Jackwood, Darrell R Kapczynski

Affiliations

  1. Southeast Poultry Research Laboratory, USA National Poultry Research Center, Agricultural Research Service, USA, Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
  2. Diagnostic Virology Laboratory, National Veterinary Services Laboratories, U.S. Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010, USA.

PMID: 34207098 PMCID: PMC8234733 DOI: 10.3390/v13061166

Abstract

In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.

Keywords: H7N9; adaptation; avian influenza virus; duck; polymorphism; transmissibility; whole genome sequencing

References

  1. Virology. 2017 Sep;509:159-166 - PubMed
  2. Science. 2006 Apr 21;312(5772):384-8 - PubMed
  3. Comp Immunol Microbiol Infect Dis. 2009 Jul;32(4):311-23 - PubMed
  4. FEBS Lett. 2007 Nov 13;581(27):5300-6 - PubMed
  5. J Virol. 2013 Mar;87(6):3108-18 - PubMed
  6. J Virol. 2020 Dec 2;: - PubMed
  7. Bioinformatics. 2012 Jun 15;28(12):1647-9 - PubMed
  8. Genome Res. 2004 Jun;14(6):1147-59 - PubMed
  9. Emerg Infect Dis. 2018 Jun;24(6):1103-1107 - PubMed
  10. Bioinformatics. 2013 Apr 15;29(8):1072-5 - PubMed
  11. J Virol. 2013 Aug;87(16):9086-96 - PubMed
  12. Rev Sci Tech. 2000 Aug;19(2):463-82 - PubMed
  13. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18590-5 - PubMed
  14. Science. 2001 Sep 7;293(5536):1840-2 - PubMed
  15. J Virol. 2001 Jul;75(14):6566-71 - PubMed
  16. Emerg Infect Dis. 2007 Mar;13(3):404-11 - PubMed
  17. EMBO J. 2009 Jun 17;28(12):1803-11 - PubMed
  18. J Virol. 2015 Nov;89(21):10724-34 - PubMed
  19. Virol J. 2017 Apr 7;14(1):72 - PubMed
  20. J Virol. 2005 May;79(10):6472-7 - PubMed
  21. J Virol. 2014 Apr;88(8):4375-88 - PubMed
  22. Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10 - PubMed
  23. FEBS Lett. 1999 Dec 24;464(1-2):71-4 - PubMed
  24. Vet Res. 2017 Feb 6;48(1):7 - PubMed
  25. PLoS Pathog. 2007 May 11;3(5):e61 - PubMed
  26. Source Code Biol Med. 2013 Nov 22;8(1):23 - PubMed
  27. BMC Bioinformatics. 2008;9 Suppl 1:S18 - PubMed
  28. J Clin Microbiol. 2002 Sep;40(9):3256-60 - PubMed
  29. J Virol. 2011 Feb;85(4):1834-46 - PubMed
  30. Emerg Infect Dis. 2017 Nov;23(11): - PubMed
  31. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71 - PubMed
  32. Front Microbiol. 2018 Oct 24;9:2546 - PubMed
  33. Vet Res. 2018 Aug 29;49(1):82 - PubMed
  34. Virus Evol. 2020 Feb 17;6(1):veaa010 - PubMed
  35. PLoS One. 2019 Sep 12;14(9):e0222457 - PubMed
  36. PLoS One. 2017 May 8;12(5):e0177265 - PubMed
  37. J Virol. 2011 Jul;85(14):7020-8 - PubMed

Publication Types