Display options
Share it on

J Orofac Orthop. 2021 Jul 16; doi: 10.1007/s00056-021-00326-x. Epub 2021 Jul 16.

Administration of a VEGFR‑2-specific MRI contrast agent to assess orthodontic tooth movement : A pilot study.

Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie

Agnes Schröder, Lisa Seyler, Elisabeth Hofmann, Lina Gölz, Jonathan Jantsch, Peter Proff, Tobias Bäuerle, Christian Kirschneck

Affiliations

  1. Department of Orthodontics, University Hospital Regensburg, 93053, Regensburg, Germany.
  2. PIPE (Preclinical Imaging Platform Erlangen) and Department of Radiology, University of Erlangen-Nuremberg, 91054, Erlangen, Germany.
  3. Private Orthodontic Practise, 44649, Herne, Germany.
  4. Department of Orthodontics, University of Erlangen-Nuremberg, 91054, Erlangen, Germany.
  5. Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany.
  6. Department of Orthodontics, University Hospital Regensburg, 93053, Regensburg, Germany. [email protected].

PMID: 34269823 DOI: 10.1007/s00056-021-00326-x

Abstract

PURPOSE: It is thought that orthodontic forces initially reduce periodontal blood flow during orthodontic tooth movement (OTM) via tissue compression with cells responding to concomitant oxygen deprivation with expression of vascular endothelial growth factor (VEGF) triggering angiogenesis via binding to its receptor VEGFR‑2. To test this hypothesis, we performed a pilot study to establish a protocol for molecular magnetic resonance imaging (MRI) of rat jaws administering a VEGFR-2-specific contrast agent.

METHODS: Mesial OTM of a first upper left rat molar was initiated in one male Fischer 344 rat 4 days prior to MRI by insertion of an elastic band between the first and second upper molars with the contralateral side left untreated (internal control). T1-weighted MRI sequences including dynamic contrast-enhanced MRI (DCE-MRI) were recorded before and after administration of a molecular VEGFR‑2 MRI marker with a 7 T MRI dedicated for small animal use.

RESULTS: After injection of anti-VEGFR2-albumin-gadolinium-DTPA, volume enhancement on T1-weighted images was increased at the OTM side distally of the moved first upper molar (M1) compared to the control side, whereas the T1 relaxation time was reduced on the OTM side. DCE-MRI resulted in an increased area under the curve (AUC), whereas time-to-peak (TTP) and washout rate were reduced during OTM distally of the moved M1 compared to the contralateral side.

CONCLUSIONS: OTM resulted in uptake of the VEGFR-2-specific MRI contrast agent in tension areas of the periodontal ligament. The imaging protocol presented here is useful for the assessment of VEGFR‑2 expression in tension areas of the periodontal ligament in vivo.

© 2021. The Author(s).

Keywords: Animal models; Hypoxia; Molecular magnetic resonance imaging; Periodontal ligament; Vascular endothelial growth factor receptor‑2

References

  1. Murphy A, Jones J (2020) T1 weighted image. https://radiopaedia.org/articles/t1-weighted-image . Accessed 4 Apr 2020 - PubMed
  2. Alhashimi N, Frithiof L, Brudvik P et al (2001) Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop 119:307–312 - PubMed
  3. Basdra EK (1997) Biological reactions to orthodontic tooth movement. J Orofac Orthop 58:2–15 - PubMed
  4. Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621 - PubMed
  5. Davidovitch Z, Montgomery PC, Gustafson GT et al (1976) Cellular localization of cyclic AMP in periodontal tissues during experimental tooth movement in cats. Calcif Tissue Res 19:317–329 - PubMed
  6. Di Domenico M, D’apuzzo F, Feola A et al (2012) Cytokines and VEGF induction in orthodontic movement in animal models. J Biomed Biotechnol 2012:201689 - PubMed
  7. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611 - PubMed
  8. Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57:1009–1014 - PubMed
  9. He T, Smith N, Saunders D et al (2011) Molecular MRI assessment of vascular endothelial growth factor receptor‑2 in rat C6 gliomas. J Cell Mol Med 15:837–849 - PubMed
  10. He T, Smith N, Saunders D et al (2013) Molecular MRI differentiation of VEGF receptor‑2 levels in C6 and RG2 glioma models. Am J Nucl Med Mol Imaging 3:300–311 - PubMed
  11. Kirschneck C, Proff P, Fanghänel J et al (2016) Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann Anat 204:93–105 - PubMed
  12. Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88:597–608 - PubMed
  13. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469.e1–469.32 - PubMed
  14. Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A 95:15809–15814 - PubMed
  15. Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240 - PubMed
  16. Mohamed KM, Le A, Duong H et al (2004) Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol 76:143–152 - PubMed
  17. Narimiya T, Wada S, Kanzaki H et al (2017) Orthodontic tensile strain induces angiogenesis via type IV collagen degradation by matrix metalloproteinase-12. J Periodontal Res 52:842–852 - PubMed
  18. Niklas A, Proff P, Gosau M et al (2013) The role of hypoxia in orthodontic tooth movement. Int J Dent 2013:841840 - PubMed
  19. Odagaki N, Ishihara Y, Wang Z et al (2018) Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J Dent Res 97(12):1374–1382. https://doi.org/10.1177/0022034518771331 - PubMed
  20. Proff P, Römer P (2009) The molecular mechanism behind bone remodelling: a review. Clin Oral Investig 13:355–362 - PubMed
  21. Römer P, Köstler J, Koretsi V et al (2013) Endotoxins potentiate COX‑2 and RANKL expression in compressed PDL cells. Clin Oral Investig 17:2041–2048 - PubMed
  22. Schröder A, Küchler EC, Omori M et al (2019) Effects of ethanol on human periodontal ligament fibroblasts subjected to static compressive force. Alcohol 77:59–70 - PubMed
  23. Shoji-Matsunaga A, Ono T, Hayashi M et al (2017) Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci Rep 7(1):8753. https://doi.org/10.1038/s41598-017-09326-7 - PubMed
  24. Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845 - PubMed
  25. Towner RA, Smith N, Doblas S et al (2008) In vivo detection of c‑Met expression in a rat C6 glioma model. J Cell Mol Med 12:174–186 - PubMed
  26. Towner RA, Smith N, Tesiram YA et al (2007) In vivo detection of c‑MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging. Mol Imaging 6:18–29 - PubMed
  27. Waldo C, Rothblatt J (1954) Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J Dent Res 33:481–486 - PubMed
  28. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333 - PubMed
  29. Wolf M, Lossdörfer S, Marciniak J et al (2016) CD8+ T cells mediate the regenerative PTH effect in hPDL cells via Wnt10b signaling. Innate Immun 22:674–681 - PubMed
  30. Wolf M, Lossdörfer S, Römer P et al (2016) Short-term heat pre-treatment modulates the release of HMGB1 and pro-inflammatory cytokines in hPDL cells following mechanical loading and affects monocyte behavior. Clin Oral Investig 20:923–931 - PubMed
  31. Yamaguchi M (2009) RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res 12:113–119 - PubMed
  32. Ylä-Herttuala S, Rissanen TT, Vajanto I et al (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49:1015–1026 - PubMed

Publication Types