Display options
Share it on

Tob Induc Dis. 2021 Jun 29;19:56. doi: 10.18332/tid/138336. eCollection 2021.

Changes in salivary proteome before and after cigarette smoking in smokers compared to sham smoking in nonsmokers: A pilot study.

Tobacco induced diseases

Indu Sinha, Jennifer Modesto, Nicolle M Krebs, Anne E Stanley, Vonn A Walter, John P Richie, Joshua E Muscat, Raghu Sinha

Affiliations

  1. Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Hershey, United States.
  2. Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States.
  3. Mass Spectrometry and Proteomics Core, Penn State University College of Medicine, Hershey, United States.

PMID: 34239408 PMCID: PMC8240953 DOI: 10.18332/tid/138336

Abstract

INTRODUCTION: Smoking is the leading cause of preventable disease. Although smoking results in an acute effect of relaxation and positive mood through dopamine release, smoking is thought to increase stress symptoms such as heart rate and blood pressure from nicotine-induced effects on the HPA axis and increased cortisol. Despite the importance in understanding the mechanisms in smoking maintenance, little is known about the overall protein and physiological response to smoking. There may be multiple functions involved that if identified might help in improving methods for behavioral and pharmacological interventions. Therefore, our goal for this pilot study was to identify proteins in the saliva that change in response to an acute smoking event versus acute sham smoking event in smokers and non-smokers, respectively.

METHODS: We employed the iTRAQ technique followed by Mass Spectrometry to identify differentially expressed proteins in saliva of smokers and non-smokers after smoking cigarettes and sham smoking, respectively. We also validated some of the salivary proteins by ELISA or western blotting. In addition, salivary cortisol and salivary amylase (sAA) activity were measured.

RESULTS: In all, 484 salivary proteins were identified. Several proteins were elevated as well as decreased in smokers compared to non-smokers. Among these were proteins associated with stress response including fibrinogen alpha, cystatin A and sAA. Our investigation also highlights methodological considerations in study design, sampling and iTRAQ analysis.

CONCLUSIONS: We suggest further investigation of other differentially expressed proteins in this study including ACBP, A2ML1, APOA4, BPIB1, BPIA2, CAH1, CAH6, CYTA, DSG1, EST1, GRP78, GSTO1, sAA, SAP, STAT, TCO1, and TGM3 that might assist in improving methods for behavioral and pharmacological interventions for smokers.

© 2021 Sinha I. et al.

Keywords: non-smokers; proteomics; saliva; salivary alpha amylase; smokers

Conflict of interest statement

The authors have each completed and submitted an ICMJE form for disclosure of potential conflicts of interest. The authors declare that they have no competing interests, financial or otherwise, relate

References

  1. J Breath Res. 2020 Dec 03;: - PubMed
  2. J Korean Med Sci. 2015 Mar;30(3):221-6 - PubMed
  3. J Proteome Res. 2011 Mar 4;10(3):1151-9 - PubMed
  4. BMJ. 2014 Jan 20;348:g396 - PubMed
  5. J Investig Med. 2011 Aug;59(6):966-70 - PubMed
  6. Proteomics. 2006 May;6(10):3138-53 - PubMed
  7. Free Radic Biol Med. 2011 Aug 1;51(3):726-32 - PubMed
  8. Physiol Behav. 2007 Jan 30;90(1):43-53 - PubMed
  9. Iran J Pediatr. 2015 Oct;25(5):e2996 - PubMed
  10. Clin Sci (Lond). 2017 May 22;131(11):1147-1159 - PubMed
  11. Nat Genet. 2007 Oct;39(10):1256-60 - PubMed
  12. Anal Quant Cytol Histol. 2011 Feb;33(1):19-24 - PubMed
  13. Acta Anaesthesiol Scand. 2006 Sep;50(8):982-7 - PubMed
  14. PLoS One. 2012;7(11):e50710 - PubMed
  15. Psychopharmacology (Berl). 1992;106(2):275-81 - PubMed
  16. Biomed Res Int. 2013;2013:168765 - PubMed
  17. Addiction. 2010 Aug;105(8):1466-71 - PubMed
  18. Am J Epidemiol. 2016 Jul 1;184(1):48-57 - PubMed
  19. Ann N Y Acad Sci. 2004 Dec;1032:258-63 - PubMed
  20. Methods Mol Biol. 2012;829:329-48 - PubMed
  21. J Neuroimmune Pharmacol. 2020 Dec;15(4):694-714 - PubMed
  22. Int J Psychophysiol. 2006 Mar;59(3):228-35 - PubMed
  23. Cancer Epidemiol Biomarkers Prev. 1995 Oct-Nov;4(7):751-8 - PubMed
  24. Biomarkers. 2017 May - Jun;22(3-4):372-382 - PubMed
  25. J Formos Med Assoc. 2014 Sep;113(9):640-7 - PubMed
  26. Cochrane Database Syst Rev. 2020 Apr 22;4:CD000031 - PubMed
  27. J Proteomics. 2012 Apr 3;75(7):2064-79 - PubMed
  28. Am Psychol. 1999 Oct;54(10):817-20 - PubMed
  29. J Lipid Res. 1998 Jul;39(7):1493-502 - PubMed
  30. J Clin Bioinforma. 2011 Nov 10;1:31 - PubMed
  31. J Chin Med Assoc. 2015 Sep;78(9):513-9 - PubMed
  32. Chem Res Toxicol. 2017 Nov 20;30(11):2074-2083 - PubMed
  33. Toxicol Lett. 2015 Jan 22;232(2):429-37 - PubMed
  34. Respir Res. 2017 May 2;18(1):78 - PubMed
  35. Thorax. 2004 Aug;59(8):713-21 - PubMed
  36. Psychoneuroendocrinology. 2009 Feb;34(2):163-171 - PubMed
  37. Physiol Behav. 2012 Feb 1;105(3):841-9 - PubMed
  38. Proteomics Clin Appl. 2007 Nov;1(11):1406-27 - PubMed
  39. Life Sci. 1992;50(6):435-42 - PubMed
  40. Turk J Gastroenterol. 2013;24(1):36-42 - PubMed
  41. OMICS. 2016 Apr;20(4):202-13 - PubMed
  42. PLoS One. 2013;8(1):e51784 - PubMed
  43. Toxicology. 2018 Feb 1;394:11-18 - PubMed
  44. Electrophoresis. 2008 Apr;29(7):1525-33 - PubMed
  45. PLoS One. 2014 Jul 18;9(7):e102037 - PubMed
  46. Open Heart. 2016 Jan 27;3(1):e000353 - PubMed
  47. Int J Chron Obstruct Pulmon Dis. 2015 Sep 15;10:1957-75 - PubMed
  48. Arterioscler Thromb. 1992 Sep;12(9):1017-22 - PubMed
  49. J Physiol Pharmacol. 2008 Dec;59 Suppl 6:727-37 - PubMed
  50. Psychoneuroendocrinology. 2009 May;34(4):486-96 - PubMed
  51. Int J Mol Sci. 2010 Nov 09;11(11):4488-505 - PubMed
  52. PLoS One. 2010 Oct 13;5(10):e13352 - PubMed
  53. Psychoneuroendocrinology. 2011 May;36(4):449-53 - PubMed
  54. J Periodontal Implant Sci. 2016 Oct;46(5):320-328 - PubMed
  55. Front Pharmacol. 2016 Jan 12;6:319 - PubMed
  56. Int J Psychophysiol. 2015 Dec;98(3 Pt 1):470-6 - PubMed

Publication Types