Display options
Share it on

Diagnostics (Basel). 2021 Jun 11;11(6). doi: 10.3390/diagnostics11061077.

Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease.

Diagnostics (Basel, Switzerland)

Karl Ludger Radke, Lena Marie Wollschläger, Sven Nebelung, Daniel Benjamin Abrar, Christoph Schleich, Matthias Boschheidgen, Miriam Frenken, Justus Schock, Dirk Klee, Jens Frahm, Gerald Antoch, Simon Thelen, Hans-Jörg Wittsack, Anja Müller-Lutz

Affiliations

  1. Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany.
  2. Department of Orthopaedics and Trauma Surgery, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany.
  3. Department of General Pediatrics, University Children's Hospital, Heinrich-Heine-University Dusseldorf, D-40225 Dusseldorf, Germany.
  4. Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, D-37077 Goettingen, Germany.

PMID: 34208361 PMCID: PMC8231139 DOI: 10.3390/diagnostics11061077

Abstract

While morphologic magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of ligamentous wrist injuries, it is merely static and incapable of diagnosing dynamic wrist instability. Based on real-time MRI and algorithm-based image post-processing in terms of convolutional neural networks (CNNs), this study aims to develop and validate an automatic technique to quantify wrist movement. A total of 56 bilateral wrists (28 healthy volunteers) were imaged during continuous and alternating maximum ulnar and radial abduction. Following CNN-based automatic segmentations of carpal bone contours, scapholunate and lunotriquetral gap widths were quantified based on dedicated algorithms and as a function of wrist position. Automatic segmentations were in excellent agreement with manual reference segmentations performed by two radiologists as indicated by Dice similarity coefficients of 0.96 ± 0.02 and consistent and unskewed Bland-Altman plots. Clinical applicability of the framework was assessed in a patient with diagnosed scapholunate ligament injury. Considerable increases in scapholunate gap widths across the range-of-motion were found. In conclusion, the combination of real-time wrist MRI and the present framework provides a powerful diagnostic tool for dynamic assessment of wrist function and, if confirmed in clinical trials, dynamic carpal instability that may elude static assessment using clinical-standard imaging modalities.

Keywords: carpal instability; deep learning; dynamic instability; magnetic resonance imaging; real-time; scapholunate ligament injury

References

  1. Eur J Radiol. 2016 Dec;85(12):2225-2230 - PubMed
  2. Magn Reson Med. 2018 Apr;79(4):2379-2391 - PubMed
  3. Eur J Radiol. 2019 Apr;113:89-95 - PubMed
  4. Magn Reson Med. 1999 Nov;42(5):952-62 - PubMed
  5. Magn Reson Med. 2019 Sep;82(3):1055-1072 - PubMed
  6. IEEE Trans Med Imaging. 2016 May;35(5):1240-1251 - PubMed
  7. Radiology. 2006 Mar;238(3):950-7 - PubMed
  8. Magn Reson Med. 2003 Nov;50(5):1031-42 - PubMed
  9. Dentomaxillofac Radiol. 2019 Jan;48(1):20180162 - PubMed
  10. J Hand Surg Am. 2009 Oct;34(8):1527-30 - PubMed
  11. IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848 - PubMed
  12. Biomed Res Int. 2020 Jul 7;2020:4621403 - PubMed
  13. Sensors (Basel). 2020 Jun 03;20(11): - PubMed
  14. Magn Reson Med. 2002 Jun;47(6):1202-10 - PubMed
  15. Comput Methods Programs Biomed. 2021 Mar;200:105821 - PubMed
  16. Orthop Clin North Am. 2007 Apr;38(2):261-77, vii - PubMed
  17. J Wrist Surg. 2013 Feb;2(1):69-72 - PubMed
  18. Radiol Artif Intell. 2020 Dec 23;3(2):e200198 - PubMed
  19. J Hand Surg Eur Vol. 2013 Sep;38(7):727-38 - PubMed
  20. J Hand Surg Br. 1990 May;15(2):220-8 - PubMed
  21. NMR Biomed. 2010 Oct;23(8):986-94 - PubMed
  22. Poult Sci. 1991 Jul;70(7):1462-8 - PubMed
  23. Med Biol Eng Comput. 2020 Sep;58(9):2161-2175 - PubMed
  24. Magn Reson Med. 2013 Feb;69(2):477-85 - PubMed
  25. EFORT Open Rev. 2017 Sep 19;2(9):382-393 - PubMed
  26. Acta Radiol. 2016 Dec;57(12):1508-1514 - PubMed
  27. J Magn Reson Imaging. 2014 Jul;40(1):206-13 - PubMed
  28. Diagnostics (Basel). 2017 Aug 24;7(3): - PubMed
  29. J Hand Surg Am. 1984 May;9(3):358-65 - PubMed
  30. Magn Reson Med. 2020 Sep;84(3):1280-1292 - PubMed
  31. PLoS One. 2019 Sep 19;14(9):e0222704 - PubMed
  32. PLoS One. 2013 Dec 31;8(12):e84004 - PubMed
  33. NMR Biomed. 2020 Aug;33(8):e4320 - PubMed
  34. J Digit Imaging. 2015 Dec;28(6):738-47 - PubMed
  35. J Bone Joint Surg Am. 1988 Sep;70(8):1262-8 - PubMed
  36. Comput Med Imaging Graph. 2020 Jun;82:101719 - PubMed
  37. AJR Am J Roentgenol. 2007 May;188(5):1278-86 - PubMed
  38. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248 - PubMed
  39. J Hand Surg Eur Vol. 2016 Jan;41(1):22-34 - PubMed
  40. Comput Biol Med. 2019 Jun;109:218-225 - PubMed

Publication Types

Grant support