Display options
Share it on

Front Hum Neurosci. 2021 Jul 08;15:690856. doi: 10.3389/fnhum.2021.690856. eCollection 2021.

Electrophysiological Proxy of Cognitive Reserve Index.

Frontiers in human neuroscience

Elvira Khachatryan, Benjamin Wittevrongel, Matej Perovnik, Jos Tournoy, Birgitte Schoenmakers, Marc M Van Hulle

Affiliations

  1. Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
  2. Leuven Brain Institute, Leuven, Belgium.
  3. Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
  4. Department of Neurology, University Medical Center, Ljubljana, Slovenia.
  5. Department of Geriatrics and Gerontology, KU Leuven, Leuven, Belgium.
  6. Academic Centre of General Practice, KU Leuven, Leuven, Belgium.

PMID: 34305555 PMCID: PMC8295460 DOI: 10.3389/fnhum.2021.690856

Abstract

Cognitive reserve (CR) postulates that individual differences in task performance can be attributed to differences in the brain's ability to recruit additional networks or adopt alternative cognitive strategies. Variables that are descriptive of lifetime experience such as socioeconomic status, educational attainment, and leisure activity are common proxies of CR. CR is mostly studied using neuroimaging techniques such as functional MRI (fMRI) in which case individuals with a higher CR were observed to activate a smaller brain network compared to individuals with a lower CR, when performing a task equally effectively (higher efficiency), and electroencephalography (EEG) where a particular EEG component (P300) that reflects the attention and working memory load, has been targeted. Despite the contribution of multiple factors such as age, education (formal and informal), working, leisure, and household activities in CR formation, most neuroimaging studies, and those using EEG in particular, focus on formal education level only. The aim of the current EEG study is to investigate how the P300 component, evoked in response to an oddball paradigm, is associated with other components of CR besides education, such as working and leisure activity in older adults. We have used hereto a recently introduced CR index questionnaire (CRIq) that quantifies both professional and leisure activities in terms of their cognitive demand and number of years practiced, as well as a data-driven approach for EEG analysis. We observed complex relationships between CRIq subcomponents and P300 characteristics. These results are especially important given that, unlike previous studies, our measurements (P300 and CRIq) do not require active use of the same executive function and, thus, render our results free of a collinearity bias.

Copyright © 2021 Khachatryan, Wittevrongel, Perovnik, Tournoy, Schoenmakers and Van Hulle.

Keywords: EEG; P300 - event related potential; aging; cognitive reserve; oddball paradigm

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Ann Neurol. 1995 May;37(5):590-5 - PubMed
  2. Neuropsychologia. 2017 Feb;96:19-28 - PubMed
  3. Brain Sci. 2021 Mar 01;11(3): - PubMed
  4. J Alzheimers Dis Rep. 2020 Dec 14;4(1):513-524 - PubMed
  5. Psychophysiology. 2014 Jul;51(7):620-33 - PubMed
  6. Int Psychogeriatr. 1997;9 Suppl 1:173-6; discussion 177-8 - PubMed
  7. J Cogn. 2019 Aug 08;2(1):36 - PubMed
  8. Am J Alzheimers Dis Other Demen. 2016 Aug;31(5):443-9 - PubMed
  9. Behav Neurol. 2013;27(2):193-200 - PubMed
  10. Neuropsychologia. 2009 Aug;47(10):2015-28 - PubMed
  11. Crit Rev Neurobiol. 2000;14(3-4):199-224 - PubMed
  12. Arch Clin Neuropsychol. 2018 Dec 1;33(8):937-948 - PubMed
  13. Alzheimers Res Ther. 2012 Mar 01;4(2):7 - PubMed
  14. Sci Rep. 2018 Jul 12;8(1):10525 - PubMed
  15. J Neurol. 2021 May;268(5):1780-1791 - PubMed
  16. Neurobiol Aging. 2015 Mar;36(3):1424-34 - PubMed
  17. Braz J Otorhinolaryngol. 2012 Oct;78(5):83-9 - PubMed
  18. J Integr Neurosci. 2014 Mar;13(1):71-88 - PubMed
  19. Psychol Aging. 2009 Mar;24(1):116-28 - PubMed
  20. Aging Clin Exp Res. 2016 Dec;28(6):1203-1210 - PubMed
  21. J Int Neuropsychol Soc. 2013 Sep;19(8):854-62 - PubMed
  22. Comput Intell Neurosci. 2011;2011:156869 - PubMed
  23. Brain Res. 2016 Jul 1;1642:146-153 - PubMed
  24. Front Aging Neurosci. 2014 Oct 24;6:294 - PubMed
  25. Arch Clin Neuropsychol. 2014 May;29(3):245-55 - PubMed
  26. Dement Neuropsychol. 2018 Jan-Mar;12(1):1-11 - PubMed
  27. Aging Clin Exp Res. 2012 Jun;24(3):218-26 - PubMed
  28. Nat Rev Neurosci. 2012 May 18;13(6):407-20 - PubMed
  29. PLoS One. 2019 Aug 7;14(8):e0219851 - PubMed
  30. Front Aging Neurosci. 2020 Aug 26;12:249 - PubMed
  31. J Int Neuropsychol Soc. 2002 Mar;8(3):448-60 - PubMed
  32. J Am Geriatr Soc. 2005 Apr;53(4):695-9 - PubMed
  33. Hum Brain Mapp. 2021 Jan;42(1):192-203 - PubMed
  34. Front Aging Neurosci. 2014 Jun 13;6:125 - PubMed
  35. Neurology. 2019 Jul 23;93(4):e334-e346 - PubMed
  36. Metab Brain Dis. 2017 Aug;32(4):1287-1293 - PubMed
  37. J Neurosci Methods. 2007 Aug 15;164(1):177-90 - PubMed
  38. Int J Geriatr Psychiatry. 1997 Mar;12(3):323-30 - PubMed
  39. Front Aging Neurosci. 2018 Jun 26;10:189 - PubMed
  40. Brain. 2010 Aug;133(Pt 8):2196-209 - PubMed
  41. J Clin Exp Neuropsychol. 2013;35(10):1024-35 - PubMed
  42. Dement Neuropsychol. 2019 Jul-Sep;13(3):299-304 - PubMed
  43. J Alzheimers Dis. 2015;44(1):243-50 - PubMed
  44. Psychol Aging. 1999 Jun;14(2):245-63 - PubMed
  45. J Int Neuropsychol Soc. 2012 Nov;18(6):1071-80 - PubMed
  46. Front Psychol. 2019 Apr 24;10:855 - PubMed
  47. J Neuroeng Rehabil. 2015 Sep 23;12:87 - PubMed
  48. Nat Rev Neurosci. 2018 Nov;19(11):701-710 - PubMed
  49. Spat Vis. 1997;10(4):433-6 - PubMed
  50. PLoS One. 2013 May 07;8(5):e63701 - PubMed

Publication Types