Display options
Share it on

ISME J. 2021 Jul 19; doi: 10.1038/s41396-021-01058-x. Epub 2021 Jul 19.

Transcriptional response to host chemical cues underpins the expansion of host range in a fungal plant pathogen lineage.

The ISME journal

Stefan Kusch, Justine Larrouy, Heba M M Ibrahim, Shantala Mounichetty, Noémie Gasset, Olivier Navaud, Malick Mbengue, Catherine Zanchetta, Céline Lopez-Roques, Cécile Donnadieu, Laurence Godiard, Sylvain Raffaele

Affiliations

  1. Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Castanet Tolosan Cedex, France.
  2. Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany.
  3. Department of Pest Management and Conservation, Lincoln University, Lincoln, Canterbury, New Zealand.
  4. Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
  5. Division of Plant Biotechnics, KU Leuven, Leuven, Belgium.
  6. INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France.
  7. Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Castanet Tolosan Cedex, France. [email protected].

PMID: 34282282 DOI: 10.1038/s41396-021-01058-x

Abstract

The host range of parasites is an important factor in assessing the dynamics of disease epidemics. The evolution of pathogens to accommodate new hosts may lead to host range expansion, a process the molecular bases of which are largely enigmatic. The fungus Sclerotinia sclerotiorum has been reported to parasitize more than 400 plant species from diverse eudicot families while its close relative, S. trifoliorum, is restricted to plants from the Fabaceae family. We analyzed S. sclerotiorum global transcriptome reprogramming on hosts from six botanical families and reveal a flexible, host-specific transcriptional program. We generated a chromosome-level genome assembly for S. trifoliorum and found near-complete gene space conservation in two representative strains of broad and narrow host range Sclerotinia species. However, S. trifoliorum showed increased sensitivity to the Brassicaceae defense compound camalexin. Comparative analyses revealed a lack of transcriptional response to camalexin in the S. trifoliorum strain and suggest that regulatory variation in detoxification and effector genes at the population level may associate with the genetic accommodation of Brassicaceae in the Sclerotinia host range. Our work proposes transcriptional plasticity and the co-existence of signatures for generalist and polyspecialist adaptive strategies in the genome of a plant pathogen.

© 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.

References

  1. Troch V, Audenaert K, Wyand RA, Haesaert G, Höfte M, Brown JKM. Formae speciales of cereal powdery mildew: close or distant relatives? Mol Plant Pathol. 2014;15:304–14. - PubMed
  2. Thines M. An evolutionary framework for host shifts—jumping ships for survival. New Phytol. 2019;224:605–17. - PubMed
  3. Nylin S, Janz N. Butterfly host plant range: an example of plasticity as a promoter of speciation? Evolut Ecol. 2009;23:137–46. - PubMed
  4. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol. 1971;9:275–96. - PubMed
  5. Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9. - PubMed
  6. Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, et al. The genome biology of effector gene evolution in filamentous plant pathogens. Annu Rev Phytopathol. 2018;56:21–40. - PubMed
  7. Möller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol. 2017;15:756–71. - PubMed
  8. Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012;10:417–30. - PubMed
  9. Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, et al. Effector specialization in a lineage of the Irish potato famine pathogen. Science. 2014;343:552–5. - PubMed
  10. Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: Waltz with plants. Curr Opin Genet Dev. 2015;35:57–65. - PubMed
  11. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 2010;330:1540–3. - PubMed
  12. Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN, Barrett LG, et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol Lett. 2012;15:425–35. - PubMed
  13. Janzen DH. When is it coevolution? Evolution. 1980;34:611–2. - PubMed
  14. Ebert D, Fields PD. Host–parasite co-evolution and its genomic signature. Nat Rev Genet. 2020;21:754–68. - PubMed
  15. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst. 1989;20:249–78. - PubMed
  16. Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, et al. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol. 2015;206:1116–26. - PubMed
  17. Simon J-C, D’Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, et al. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics. 2015;14:413–23. - PubMed
  18. Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, Le Floch G, et al. Gene family expansions and contractions are associated with host range in plant pathogens of the genus. Colletotrichum BMC Genomics. 2016;17:555. - PubMed
  19. Wyka SA, Mondo SJ, Liu M, Dettman J, Nalam V, Broders KD. Whole-genome comparisons of ergot fungi reveals the divergence and evolution of species within the genus Claviceps are the result of varying mechanisms driving genome evolution and host range expansion. Genome Biol Evol. 2021;13:evaa267. - PubMed
  20. Laurent B, Palaiokostas C, Spataro C, Moinard M, Zehraoui E, Houston RD, et al. High-resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two-speed genome evolution. Mol Plant Pathol. 2018;19:341–54. - PubMed
  21. Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci USA. 2014;111:16796–801. - PubMed
  22. Zhang Q, Chen X, Xu C, Zhao H, Zhang X, Zeng G, et al. Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proc Natl Acad Sci USA. 2019;116:7982–9. - PubMed
  23. Zhang S, Gu S, Ni X, Li X. Genome size reversely correlates with host plant range in Helicoverpa species. Front Physiol. 2019;10:29. - PubMed
  24. Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST, Baa-Puyoulet P, et al. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol. 2017;18:27. - PubMed
  25. Boland GJ, Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol. 1994;16:93–108. - PubMed
  26. Derbyshire MC, Denton-Giles M, Hane JK, Chang S, Mousavi-Derazmahalleh M, Raffaele S, et al. A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. PLoS ONE. 2019;14:e0214201. - PubMed
  27. Derbyshire MC, Denton-Giles M, Hegedus DD, Seifbarghi S, Rollins JA, Van Kan JAL, et al. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol. 2017;9:593–618. - PubMed
  28. Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci USA. 2019;116:3193–201. - PubMed
  29. Badet T, Peyraud R, Mbengue M, Navaud O, Derbyshire MC, Oliver RP, et al. Codon optimization underpins generalist parasitism in fungi. eLife. 2017;6:e22472. - PubMed
  30. Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics. 2014;15:336. - PubMed
  31. Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Mol Plant Pathol. 2019;20:1279–97. - PubMed
  32. Ibrahim HMM, Kusch S, Didelon M, Raffaele S. Genome-wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families. Mol Plant Pathol. 2021;33:880–3. - PubMed
  33. Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, et al. Phylotranscriptomics of the Pentapetalae reveals frequent regulatory variation in plant local responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Cell. 2020;32:1820–44. - PubMed
  34. Vleugels T, Baert J, van Bockstaele E. Morphological and pathogenic characterization of genetically diverse Sclerotinia isolates from European red clover crops (Trifolium pratense L.). J Phytopathol. 2013;161:254–62. - PubMed
  35. Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, et al. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time‐resolved automated phenotyping. Plant J. 2020;103:903–17. - PubMed
  36. Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso JM, Ecker JR, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 2002;16:3100–12. - PubMed
  37. Zhou N, Tootle TL, Glazebrook J. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell. 1999;11:2419–28. - PubMed
  38. Kusch S, Ibrahim HMM, Zanchetta C, Lopez-Roques C, Donnadieu C, Raffaele S. A chromosome-scale genome assembly resource for Myriosclerotinia sulcatula infecting sedge grass (Carex sp.). Mol Plant-Microbe Interact. 2020;33:880–3. - PubMed
  39. Trapnell C, Williams BA, Pertea GM, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5. - PubMed
  40. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research. 2016;5:1408. - PubMed
  41. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. - PubMed
  42. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36. - PubMed
  43. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. - PubMed
  44. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6:1287. - PubMed
  45. Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015. http://www.repeatmasker.org . - PubMed
  46. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2016;32:767–9. - PubMed
  47. Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al. Web Apollo: a web-based genomic annotation editing platform. Genome Biol. 2013;14:R93. - PubMed
  48. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu CM, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. - PubMed
  49. Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26:2334–5. - PubMed
  50. Van Kan JAL, Stassen JHM, Mosbach A, Van Der Lee TAJ, Faino L, Farmer AD, et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol. 2017;18:75–89. - PubMed
  51. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. - PubMed
  52. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2. - PubMed
  53. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–208. - PubMed
  54. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015;43:W39–49. - PubMed
  55. Navaud O, Barbacci A, Taylor A, Clarkson JP, Raffaele S. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Mol Ecol. 2018;27:1309–23. - PubMed
  56. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2. - PubMed
  57. Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol Plant Pathol. 2018;19:2094–110. - PubMed
  58. Chen J, Ullah C, Reichelt M, Beran F, Yang Z-L, Gershenzon J, et al. The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nat Commun. 2020;11:3090. - PubMed
  59. Sexton AC, Minic Z, Cozijnsen AJ, Pedras MSC, Howlett BJ. Cloning, purification and characterisation of brassinin glucosyltransferase, a phytoalexin-detoxifying enzyme from the plant pathogen Sclerotinia sclerotiorum. Fungal Genet Biol. 2009;46:201–9. - PubMed
  60. Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, et al. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J. 2011;67:81–93. - PubMed
  61. Petre B, Lorrain C, Stukenbrock EH, Duplessis S. Host-specialized transcriptome of plant-associated organisms. Curr Opin Plant Biol. 2020;56:81–88. - PubMed
  62. Lysøe E, Seong K-Y, Kistler HC. The transcriptome of Fusarium graminearum during the infection of wheat. Mol Plant-Microbe Interact. 2011;24:995–1000. - PubMed
  63. Harris LJ, Balcerzak M, Johnston A, Schneiderman D, Ouellet T. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol. 2016;120:111–23. - PubMed
  64. Kellner R, Bhattacharyya A, Poppe S, Hsu TY, Brem RB, Stukenbrock EH. Expression profiling of the wheat pathogen Zymoseptoria tritici reveals genomic patterns of transcription and host-specific regulatory programs. Genome Biol Evol. 2014;6:1353–65. - PubMed
  65. Allan J, Regmi R, Denton-Giles M, Kamphuis LG, Derbyshire MC. The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts. Sci Rep. 2019;9:19966. - PubMed
  66. Gluck-Thaler E, Slot JC. Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLOS Pathog. 2015;11:e1005156. - PubMed
  67. Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S, Matsumae H, et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat Genet. 2016;48:201–5. - PubMed
  68. Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C, et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics. 2018;19:381. - PubMed
  69. Stern DL, Orgogozo V. The loci of evolution: How predictable is genetic evolution? Evolution. 2008;62:2155–77. - PubMed
  70. Farr DF, Rossman AY. Fungal databases, U.S. National Fungus Collections, ARS, USDA. 2021. https://nt.ars-grin.gov/fungaldatabases/ . - PubMed
  71. Leyronas C, Bardin M, Berthier K, Duffaud M, Troulet C, Torres M, et al. Assessing the phenotypic and genotypic diversity of Sclerotinia sclerotiorum in France. Eur J Plant Pathol. 2018;152:933–44. - PubMed
  72. Kumar S, Brooks MS-L. Use of red beet (Beta vulgaris L.) for antimicrobial applications - a critical review. Food Bioprocess Technol. 2018;11:17–42. - PubMed
  73. Polito L, Bortolotti M, Battelli MG, Calafato G, Bolognesi A. Ricin: an ancient story for a timeless plant toxin. Toxins. 2019;11:324. - PubMed
  74. Weston LA, Mathesius U. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol. 2013;39:283–97. - PubMed
  75. Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A. Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiol. 2019;180:1975–87. - PubMed
  76. de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65:497–522. - PubMed
  77. Beattie SR, Mark KMK, Thammahong A, Ries LNA, Dhingra S, Caffrey-Carr AK, et al. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLOS Pathog. 2017;13:e1006340. - PubMed
  78. Fasoyin OE, Wang B, Qiu M, Han X, Chung K-R, Wang S. Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genet Biol. 2018;115:41–51. - PubMed
  79. Tannous J, Kumar D, Sela N, Sionov E, Prusky D, Keller NP. Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples. Mol Plant Pathol. 2018;19:2635–50. - PubMed

Publication Types

Grant support