Display options
Share it on

Cell Mol Immunol. 2021 Sep;18(9):2165-2176. doi: 10.1038/s41423-021-00731-7. Epub 2021 Jul 19.

Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners.

Cellular & molecular immunology

Yeni Ait Ahmed, Yaojie Fu, Robim M Rodrigues, Yong He, Yukun Guan, Adrien Guillot, Ruixue Ren, Dechun Feng, Juan Hidalgo, Cynthia Ju, Fouad Lafdil, Bin Gao

Affiliations

  1. Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
  2. Université Paris-Est-Créteil, Créteil, France.
  3. Universitat Autònoma de Barcelona, Barcelona, Spain.
  4. Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
  5. Université Paris-Est-Créteil, Créteil, France. [email protected].
  6. INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France. [email protected].
  7. Institut Universitaire de France (IUF), Paris, France. [email protected].
  8. Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA. [email protected].

PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7

Abstract

Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.

© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Keywords: IL-6; Kupffer cells; Liver regeneration; Myeloid cells; Sirtuin 1

References

  1. World J Surg Oncol. 2010 Jul 07;8:57 - PubMed
  2. J Hepatol. 2015 Dec;63(6):1502-10 - PubMed
  3. Nat Commun. 2016 Jan 27;7:10321 - PubMed
  4. Hepatology. 2006 Feb;43(2 Suppl 1):S45-53 - PubMed
  5. BMC Immunol. 2018 Jul 9;19(1):23 - PubMed
  6. J Hepatol. 2015 Oct;63(4):917-25 - PubMed
  7. J Clin Invest. 2016 Jun 1;126(6):2321-33 - PubMed
  8. PLoS One. 2014 Apr 24;9(4):e96053 - PubMed
  9. Hepatology. 2003 Sep;38(3):674-82 - PubMed
  10. EMBO J. 2017 Aug 15;36(16):2353-2372 - PubMed
  11. Immunity. 2020 Sep 15;53(3):627-640.e5 - PubMed
  12. J Hepatol. 2021 Jul;75(1):163-176 - PubMed
  13. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12595-600 - PubMed
  14. Cell Mol Immunol. 2007 Aug;4(4):241-52 - PubMed
  15. Immunity. 2013 Jan 24;38(1):79-91 - PubMed
  16. Am J Pathol. 2001 Jan;158(1):131-45 - PubMed
  17. Mol Cell Biol. 2010 Oct;30(19):4712-21 - PubMed
  18. Am J Pathol. 2016 Mar;186(3):539-51 - PubMed
  19. J Hepatol. 2016 Jun;64(6):1403-15 - PubMed
  20. Cell Mol Immunol. 2021 Jan;18(1):18-37 - PubMed
  21. EMBO Mol Med. 2010 Aug;2(8):294-305 - PubMed
  22. PLoS One. 2013 Jun 06;8(6):e65070 - PubMed
  23. Cell Immunol. 2017 Dec;322:74-83 - PubMed
  24. J Hepatol. 2014 May;60(5):1090-6 - PubMed
  25. FASEB J. 2019 May;33(5):5914-5923 - PubMed
  26. J Enzymol Metab. 2015;1(1): - PubMed
  27. J Hepatol. 2019 Sep;71(3):631-633 - PubMed
  28. Hepatology. 2019 Dec;70(6):2075-2091 - PubMed
  29. Liver. 2000 Feb;20(1):66-77 - PubMed
  30. Hepatology. 2008 Feb;47(2):729-36 - PubMed
  31. Cell Mol Immunol. 2021 Jan;18(1):73-91 - PubMed
  32. Hepatology. 2019 Sep;70(3):1026-1037 - PubMed
  33. Science. 2011 Jun 10;332(6035):1284-8 - PubMed
  34. Brain Behav Immun. 2013 Jan;27(1):162-73 - PubMed
  35. Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1570-7 - PubMed
  36. J Immunol. 2014 Jul 1;193(1):344-53 - PubMed
  37. Curr Opin Immunol. 2015 Jun;34:75-82 - PubMed
  38. PLoS One. 2016 Jul 25;11(7):e0159524 - PubMed
  39. Hepatology. 2021 Jul;74(1):116-132 - PubMed
  40. Immunity. 2015 Jan 20;42(1):145-58 - PubMed
  41. Nat Immunol. 2015 May;16(5):448-57 - PubMed
  42. Gastroenterology. 2003 Jul;125(1):202-15 - PubMed
  43. Front Immunol. 2020 Apr 17;11:322 - PubMed
  44. Cell Mol Immunol. 2021 Jan;18(1):45-56 - PubMed
  45. Hepatology. 2001 Nov;34(5):918-25 - PubMed
  46. PLoS One. 2015 Sep 02;10(9):e0136774 - PubMed
  47. Int J Biol Sci. 2015 Aug 21;11(10):1236-47 - PubMed
  48. Hepatology. 2011 Sep 2;54(3):989-98 - PubMed
  49. J Hepatol. 2018 Apr;68(4):682-690 - PubMed
  50. Methods Mol Biol. 2020;2164:45-53 - PubMed
  51. Nat Rev Gastroenterol Hepatol. 2016 Feb;13(2):88-110 - PubMed
  52. Nat Rev Immunol. 2017 May;17(5):306-321 - PubMed

Publication Types

Grant support