Display options
Share it on

Cardiol Res Pract. 2021 Jun 30;2021:5569961. doi: 10.1155/2021/5569961. eCollection 2021.

Alterations in the Plasma and Red Blood Cell Properties in Patients with Varicose Vein: A Pilot Study.

Cardiology research and practice

Lukasz Gwozdzinski, Anna Pieniazek, Joanna Bernasinska-Slomczewska, Pawel Hikisz, Krzysztof Gwozdzinski

Affiliations

  1. Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland.
  2. Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

PMID: 34306747 PMCID: PMC8263278 DOI: 10.1155/2021/5569961

Abstract

The varicose vein results from the inefficient functioning of the valves in the lower limb veins, making the blood flow slow down and leading to blood stasis and hypoxia. This type of vein dysfunction might be a result of the development of oxidative stress. We compared oxidative stress markers in the plasma and erythrocytes obtained from peripheral veins and varicose veins in the same patients (glutathione, nonenzymatic antioxidant capacity (NEAC), catalase (CAT) and acetylcholinesterase (AChE) activity, thiols, thiobarbituric acid-reactive substance (TBARS), and protein carbonyls). We found a decrease in NEAC in the plasma obtained from the varicose veins compared to the peripheral veins. We detected a decrease in thiols in the plasma, hemolysate, and plasma membranes and increase in protein carbonyl compounds and TBARS levels in the varicose veins. These changes were accompanied by a decrease in CAT and AChE activity. For the first time, our results show changes in the plasma, erythrocyte membrane, and hemolysate protein properties in varicose vein blood in contrast to the plasma and erythrocytes in peripheral vein blood from the same patients. The increased oxidative stress accompanying varicose vein disease might result from the local inefficiency of the antioxidant defense system.

Copyright © 2021 Lukasz Gwozdzinski et al.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

References

  1. Methods Enzymol. 1990;186:464-78 - PubMed
  2. Clin Hemorheol Microcirc. 2015 Jul 16;60(2):171-8 - PubMed
  3. Int Angiol. 2008 Oct;27(5):361-9 - PubMed
  4. Front Physiol. 2014 Aug 12;5:285 - PubMed
  5. Phlebology. 2008;23(1):15-20 - PubMed
  6. Oxid Med Cell Longev. 2017;2017:9718615 - PubMed
  7. Biophys J. 1970 Jul;10(7):618-29 - PubMed
  8. J Vasc Surg. 1999 Jul;30(1):148-56 - PubMed
  9. Redox Biol. 2018 Apr;14:618-625 - PubMed
  10. Free Radic Biol Med. 2017 Feb;103:95-106 - PubMed
  11. Oxid Med Cell Longev. 2015;2015:783073 - PubMed
  12. Redox Biol. 2015 Dec;6:372-385 - PubMed
  13. Biochim Biophys Acta. 1978 Dec 15;515(4):395-436 - PubMed
  14. Int J Mol Sci. 2018 Jun 05;19(6): - PubMed
  15. Trends Endocrinol Metab. 2009 Sep;20(7):332-40 - PubMed
  16. Vascular. 2018 Jun;26(3):315-321 - PubMed
  17. Acta Biochim Pol. 2011;58(1):89-94 - PubMed
  18. Methods Enzymol. 1986;127:239-49 - PubMed
  19. Anal Biochem. 2000 Sep 10;284(2):217-20 - PubMed
  20. J Physiol. 2004 Mar 16;555(Pt 3):589-606 - PubMed
  21. Arch Biochem Biophys. 1959 May;82(1):70-7 - PubMed
  22. Anal Biochem. 1996 Jul 15;239(1):70-6 - PubMed
  23. Am J Physiol Lung Cell Mol Physiol. 2003 Aug;285(2):L322-33 - PubMed
  24. Eur J Vasc Endovasc Surg. 2002 Jun;23(6):550-5 - PubMed
  25. Arch Biochem Biophys. 1977 Apr 30;180(2):248-57 - PubMed
  26. Biochim Biophys Acta. 1998 Jul 23;1381(2):191-202 - PubMed
  27. Oxid Med Cell Longev. 2020 May 14;2020:5732956 - PubMed
  28. Redox Biol. 2018 Oct;19:218-225 - PubMed
  29. Front Physiol. 2014 Feb 28;5:84 - PubMed
  30. Oxid Med Cell Longev. 2016;2016:1245049 - PubMed
  31. Redox Biol. 2015 Aug;5:124-139 - PubMed
  32. J Vasc Surg. 2012 May;55(5):1427-39 - PubMed
  33. Nature. 1996 Mar 21;380(6571):221-6 - PubMed
  34. Mech Ageing Dev. 1990 Feb 15;51(3):283-97 - PubMed
  35. Microvasc Res. 2017 May;111:72-79 - PubMed
  36. Proc Natl Acad Sci U S A. 2015 May 19;112(20):6425-30 - PubMed
  37. Free Radic Biol Med. 2013 Dec;65:244-253 - PubMed
  38. Annu Rev Biochem. 2016 Jun 2;85:765-92 - PubMed
  39. ScientificWorldJournal. 2013 Dec 18;2013:168376 - PubMed
  40. Cell Metab. 2005 Jun;1(6):401-8 - PubMed
  41. Annu Rev Biochem. 1971;40:227-36 - PubMed
  42. Pathology. 2010;42(5):446-53 - PubMed
  43. Cell Stress Chaperones. 2017 May;22(3):429-443 - PubMed
  44. Biochem Pharmacol. 1961 Jul;7:88-95 - PubMed
  45. Clin Appl Thromb Hemost. 2016 Oct;22(7):656-64 - PubMed
  46. Free Radic Biol Med. 2016 Nov;100:14-31 - PubMed
  47. Biochim Biophys Acta. 2014 Apr;1843(4):806-14 - PubMed
  48. Arch Biochem Biophys. 1963 Jan;100:119-30 - PubMed
  49. J Biol Chem. 1946 Aug;164(2):703-23 - PubMed
  50. J Vasc Surg. 2013 Jan;57(1):205-13 - PubMed
  51. Circulation. 2014 Aug 12;130(7):582-7 - PubMed
  52. World J Surg. 2003 Apr;27(4):473-5 - PubMed
  53. Br J Haematol. 1971 Jan;20(1):95-111 - PubMed
  54. Biosci Biotechnol Biochem. 1998 Jun;62(6):1201-4 - PubMed
  55. J Vasc Res. 2011;48(3):185-94 - PubMed
  56. Molecules. 2017 Sep 08;22(9): - PubMed
  57. J Clin Med. 2020 Mar 12;9(3): - PubMed
  58. Methods Enzymol. 1984;105:121-6 - PubMed
  59. Anal Biochem. 2000 Apr 10;280(1):80-6 - PubMed
  60. Cent Eur J Immunol. 2014;39(4):525-31 - PubMed
  61. Biochim Biophys Acta. 1996 Jul 18;1295(2):222-38 - PubMed
  62. Phlebology. 2018 Aug;33(7):464-469 - PubMed
  63. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  64. Eur J Vasc Endovasc Surg. 2015 Aug;50(2):250-6 - PubMed
  65. Antioxid Redox Signal. 2009 Jun;11(6):1349-56 - PubMed
  66. Anal Biochem. 2001 Jan 15;288(2):188-94 - PubMed
  67. Biochem Pharmacol. 2009 Sep 15;78(6):539-52 - PubMed

Publication Types