Display options
Share it on

Mol Neurobiol. 2021 Oct;58(10):5312-5326. doi: 10.1007/s12035-021-02489-5. Epub 2021 Jul 20.

Therapeutic Assay with the Non-toxic C-Terminal Fragment of Tetanus Toxin (TTC) in Transgenic Murine Models of Prion Disease.

Molecular neurobiology

Marina Betancor, Laura Moreno-Martínez, Óscar López-Pérez, Alicia Otero, Adelaida Hernaiz, Tomás Barrio, Juan José Badiola, Rosario Osta, Rosa Bolea, Inmaculada Martín-Burriel

Affiliations

  1. Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
  2. Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.
  3. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.
  4. Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
  5. UMR Institut National de La Recherche Pour L'Agriculture, L'Alimentation Et L'Environment (INRAE)/École Nationale Vétérinaire de Toulouse (ENVT) 1225 IHAP (Interactions Hôtes-Agents Pathogènes), 31076, Toulouse, France.
  6. Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain. [email protected].

PMID: 34283400 PMCID: PMC8497292 DOI: 10.1007/s12035-021-02489-5

Abstract

The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrP

© 2021. The Author(s).

Keywords: Autophagy; Neurodegeneration; Prion; Prion diseases; Tetanus toxin

References

  1. Prusiner S (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144. https://doi.org/10.1126/science.6801762 - PubMed
  2. Pattison IH, Jones KM (1967) The possible nature of the transmissible agent of scrapie. Vet Rec 80:2–9. https://doi.org/10.1136/vr.80.1.2 - PubMed
  3. Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11:155–159. https://doi.org/10.1038/nrn2786 - PubMed
  4. Liberski PP, Sikorska B, Bratosiewicz-Wasik J, Carleton Gajdusek D, Brown P (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36:2473–2490. https://doi.org/10.1016/j.biocel.2004.04.016 - PubMed
  5. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786. https://doi.org/10.1038/nature05291 - PubMed
  6. Heiseke A, Aguib Y, Schatzl HM (2010) Autophagy, prion infection and their mutual interactions. Curr Issues Mol Biol 12:87–97 - PubMed
  7. Nassif M, Hetz C (2014) Targeting autophagy in ALS: a complex mission. Autophagy 7:450–453. https://doi.org/10.4161/auto.7.4.14700 - PubMed
  8. Boellaard JW, Schlote W, Tateishi J (1989) Neuronal autophagy in experimental Creutzfeldt-Jakob’s disease. Acta Neuropathol 78:410–418. https://doi.org/10.1007/bf00688178 - PubMed
  9. Xu Y, Tian C, Wang S-B, Xie W-L, Guo Y, Zhang J, Shi Q, Chen C et al (2014) Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 8:1604–1620. https://doi.org/10.4161/auto.21482 - PubMed
  10. Moon J-H, Lee J-H, Nazim U Md., Lee Y-J, Seol J-W, Eo S-K, Lee J-H, Park S-Y (2016) Human prion protein-induced autophagy flux governs neuron cell damage in primary neuron cells. Oncotarget 7:29989–30002. https://doi.org/10.18632/oncotarget.8802 - PubMed
  11. Llorens F, Thüne K, Sikorska B, Schmitz M, Tahir W, Fernández-Borges N, Cramm M, Gotzmann N et al (2017) Altered Ca2+ homeostasis induces calpain-cathepsin axis activation in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 5. https://doi.org/10.1186/s40478-017-0431-y - PubMed
  12. López-Pérez Ó, Toivonen JM, Otero A, Solanas L, Zaragoza P, Badiola JJ, Osta R, Bolea R et al (2019) Impairment of autophagy in scrapie-infected transgenic mice at the clinical stage. Lab Invest 100:52–63. https://doi.org/10.1038/s41374-019-0312-z - PubMed
  13. Goold R, McKinnon C, Tabrizi SJ (2015) Prion degradation pathways: Potential for therapeutic intervention. Mol Cell Neurosci 66:12–20. https://doi.org/10.1016/j.mcn.2014.12.009 - PubMed
  14. Mays CE, Soto C (2016) The stress of prion disease. Brain Res 1648:553–560. https://doi.org/10.1016/j.brainres.2016.04.009 - PubMed
  15. Serrano C, Lyahyai J, Bolea R, Varona L, Monleón E, Badiola JJ, Zaragoza P, Martín-Burriel I (2009) Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions. Vet Res 40. https://doi.org/10.1051/vetres/2009024 - PubMed
  16. Sisó S, Puig B, Varea R, Vidal E, Acín C, Prinz M, Montrasio F, Badiola J et al (2002) Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol 103:615–626. https://doi.org/10.1007/s00401-001-0512-6 - PubMed
  17. Williams A, Lucassen PJ, Ritchie D, Bruce M (1997) PrP Deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144:433–438. https://doi.org/10.1006/exnr.1997.6424 - PubMed
  18. Gray F, Chrétien F, Adle-Biassette H, Dorandeu A, Ereau T, Delisle M-B, Kopp N, Ironside JW et al (1999) Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 58:321–328. https://doi.org/10.1097/00005072-199904000-00002 - PubMed
  19. Lyahyai J, Bolea R, Serrano C, Vidal E, Pumarola M, Badiola JJ, Zaragoza P, Martín-Burriel I (2007) Differential expression and protein distribution of Bax in natural scrapie. Brain Res 1180:111–120. https://doi.org/10.1016/j.brainres.2007.08.085 - PubMed
  20. Lyahyai J, Bolea R, Serrano C, Monleón E, Moreno C, Osta R, Zaragoza P, Badiola JJ et al (2006) Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathol 112:451–460. https://doi.org/10.1007/s00401-006-0094-4 - PubMed
  21. Otero A, Betancor M, Eraña H, Fernández Borges N, Lucas JJ, Badiola JJ, Castilla J, Bolea R (2021) Prion-associated neurodegeneration causes both endoplasmic reticulum stress and proteasome impairment in a murine model of spontaneous disease. Int J Mol Sci 22. https://doi.org/10.3390/ijms22010465 - PubMed
  22. Kristiansen M, Messenger MJ, Klöhn P-C, Brandner S, Wadsworth JDF, Collinge J, Tabrizi SJ (2005) Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis*. J Biol Chem 280:38851–38861. https://doi.org/10.1074/jbc.M506600200 - PubMed
  23. Farrar JJ, Yen LM, Cook T, Fairweather N, Binh N, Parry J, Parry CM (2000) Tetanus. J Neurol Neurosurg Psychiatry 69:292–301. https://doi.org/10.1136/jnnp.69.3.292 - PubMed
  24. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766. https://doi.org/10.1152/physrev.2000.80.2.717 - PubMed
  25. Herreros J, Lalli G, Schiavo G (2000) C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J 347 Pt 1:199–204 - PubMed
  26. Herreros J, Lalli G, Montecucco C, Schiavo G (2000) Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 74:1941–1950. https://doi.org/10.1046/j.1471-4159.2000.0741941.x - PubMed
  27. Coen L, Osta R, Maury M, Brulet P (1997) Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci 94:9400–9405. https://doi.org/10.1073/pnas.94.17.9400 - PubMed
  28. Chian R-J, Li J, Ay I, Celia SA, Kashi BB, Tamrazian E, Matthews JC, Bronson RT et al (2009) IGF-1: Tetanus toxin fragment C fusion protein improves delivery of IGF-1 to spinal cord but fails to prolong survival of ALS mice. Brain Res 1287:1–19. https://doi.org/10.1016/j.brainres.2009.06.066 - PubMed
  29. Larsen KE, Benn SC, Ay I, Chian R-J, Celia SA, Remington MP, Bejarano M, Liu M et al (2006) A glial cell line-derived neurotrophic factor (GDNF):tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res 1120:1–12. https://doi.org/10.1016/j.brainres.2006.08.079 - PubMed
  30. Ciriza J, García-Ojeda M, Martín-Burriel I, Agulhon C, Miana-Mena F, Muñoz M, Zaragoza P, Brûlet P et al (2008) Antiapoptotic activity maintenance of brain derived neurotrophic factor and the C fragment of the tetanus toxin genetic fusion protein. Open Life Sci 3. https://doi.org/10.2478/s11535-008-0011-z - PubMed
  31. Toivonen JM, Olivan S, Osta R (2010) Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2:2622–2644. https://doi.org/10.3390/toxins2112622 - PubMed
  32. Gil C, Chaib-Oukadour I, Pelliccioni P, Aguilera J (2000) Activation of signal transduction pathways involving trkA, PLCgamma-1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Lett 481:177–182. https://doi.org/10.1016/s0014-5793(00)02002-0 - PubMed
  33. Mendieta L, Venegas B, Moreno N, Patricio A, Martinez I, Aguilera J, Limon ID (2009) The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+)-lesions. Neurosci Res 65:98–106. https://doi.org/10.1016/j.neures.2009.06.001 - PubMed
  34. Moreno-Igoa M, Calvo AC, Penas C, Manzano R, Oliván S, Muñoz MJ, Mancuso R, Zaragoza P et al (2009) Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J Mol Med 88:297–308. https://doi.org/10.1007/s00109-009-0556-y - PubMed
  35. Olivan S, Calvo AC, Rando A, Herrando-Grabulosa M, Manzano R, Zaragoza P, Tizzano EF, Aquilera J et al (2016) Neuroprotective effect of non-viral gene therapy treatment based on tetanus toxin c-fragment in a severe mouse model of spinal muscular atrophy. Front Mol Neurosci 9. https://doi.org/10.3389/fnmol.2016.00076 - PubMed
  36. López-Pérez Ó, Badiola JJ, Bolea R, Ferrer I, Llorens F, Martín-Burriel I (2020) An update on autophagy in prion diseases. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00975 - PubMed
  37. Olivan S, Calvo AC, Gasco S, Munoz MJ, Zaragoza P, Osta R (2015) Time-point dependent activation of autophagy and the UPS in SOD1G93A mice skeletal muscle. PLoS One 10:e0134830. https://doi.org/10.1371/journal.pone.0134830 - PubMed
  38. Laude H, Vilette D, Le Dur A, Archer F, Soulier S, Besnard N, Essalmani R, Vilotte J-L (2002) New in vivo and ex vivo models for the experimental study of sheep scrapie: development and perspectives. CR Biol 325:49–57. https://doi.org/10.1016/s1631-0691(02)01393-8 - PubMed
  39. Moreno-Martinez L, de la Torre M, Munoz MJ, Zaragoza P, Aguilera J, Calvo AC, Osta R (2020) Neuroprotective fragment C of tetanus toxin modulates IL-6 in an ALS mouse model. Toxins 12:330. https://doi.org/10.3390/toxins12050330 - PubMed
  40. Schulz-Schaeffer WJ, Tschöke S, Kranefuss N, Dröse W, Hause-Reitner D, Giese A, Groschup MH, Kretzschmar HA (2000) The paraffin-embedded tissue blot detects PrPSc early in the incubation time in prion diseases. Am J Pathol 156:51–56. https://doi.org/10.1016/s0002-9440(10)64705-0 - PubMed
  41. Fraser H, Dickinson AG (1968) The sequential development of the brain lesions of scrapie in three strains of mice. J Comp Pathol 78:301–311. https://doi.org/10.1016/0021-9975(68)90006-6 - PubMed
  42. Fraser H, Dickinson AG (1973) Scrapie in mice. J Comp Pathol 83:29–40. https://doi.org/10.1016/0021-9975(73)90024-8 - PubMed
  43. Mustafa H, El Awdan S, Hegazy G, Abdel Jaleel G (2015) Prophylactic role of coenzyme Q10 and Cynara scolymus L on doxorubicin-induced toxicity in rats: Biochemical and immunohistochemical study. Indian J Pharmacol 47. https://doi.org/10.4103/0253-7613.169588 - PubMed
  44. Chaib-Oukadour I, Gil C, Aguilera J (2004) The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. J Neurochem 90:1227–1236. https://doi.org/10.1111/j.1471-4159.2004.02586.x - PubMed
  45. Kretzschmar HA, Giese A, Brown DR, Herms J, Keller B, Schmidt B, Groschup M (1997) Cell death in prion disease. J Neural Transm Suppl 50:191–210. https://doi.org/10.1007/978-3-7091-6842-4_19 - PubMed
  46. Giese A, Kretzschmar HA (2001) Prion-induced neuronal damage–the mechanisms of neuronal destruction in the subacute spongiform encephalopathies. Curr Top Microbiol Immunol 253:203–217. https://doi.org/10.1007/978-3-662-10356-2_10 - PubMed
  47. Hetz C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445. https://doi.org/10.1093/emboj/cdg537 - PubMed
  48. True-Krob HL, Chiesa R (2015) The elusive role of the prion protein and the mechanism of toxicity in prion disease. PLoS Pathog 11. https://doi.org/10.1371/journal.ppat.1004745 - PubMed
  49. Steele AD, Hetz C, Yi CH, Jackson WS, Borkowski AW, Yuan J, Wollmann RH, Lindquist S (2014) Prion pathogenesis is independent of caspase-12. Prion 1:243–247. https://doi.org/10.4161/pri.1.4.5551 - PubMed
  50. Mizushima N, Hara T (2006) Intracellular quality control by autophagy: how does autophagy prevent neurodegeneration? Autophagy 2:302–304. https://doi.org/10.4161/auto.2945 - PubMed
  51. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897. https://doi.org/10.1038/nrc1738 - PubMed
  52. Larsen KE, Sulzer D (2002) Autophagy in neurons: a review. Histol Histopathol 17:897–908. https://doi.org/10.14670/HH-17.897 - PubMed
  53. Forloni G, Artuso V, Roiter I, Morbin M, Tagliavini F (2013) Therapy in prion diseases. Curr Top Med Chem 13:2465–2476. https://doi.org/10.2174/15680266113136660173 - PubMed
  54. Aguzzi A, Lakkaraju AKK, Frontzek K (2018) Toward therapy of human prion diseases. Annu Rev Pharmacol Toxicol 58:331–351. https://doi.org/10.1146/annurev-pharmtox-010617-052745 - PubMed
  55. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735 - PubMed
  56. Mizushima N, Yoshimori T (2014) How to interpret LC3 immunoblotting. Autophagy 3:542–545. https://doi.org/10.4161/auto.4600 - PubMed
  57. Myeku N, Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy. J Biol Chem 286:22426–22440. https://doi.org/10.1074/jbc.M110.149252 - PubMed
  58. Niklaus M, Adams O, Berezowska S, Zlobec I, Graber F, Slotta-Huspenina J, Nitsche U, Rosenberg R et al (2017) Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer. Oncotarget 8:54604–54615. https://doi.org/10.18632/oncotarget.17554 - PubMed
  59. Suzuki H, Tabata K, Morita E, Kawasaki M, Kato R, Dobson RC, Yoshimori T, Wakatsuki S (2014) Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure 22:47–58. https://doi.org/10.1016/j.str.2013.09.023 - PubMed
  60. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14:2201–2214. https://doi.org/10.1089/ars.2010.3482 - PubMed
  61. López-Pérez Ó, Otero A, Filali H, Sanz-Rubio D, Toivonen JM, Zaragoza P, Badiola JJ, Bolea R et al (2019) Dysregulation of autophagy in the central nervous system of sheep naturally infected with classical scrapie. Sci Rep 9. https://doi.org/10.1038/s41598-019-38500-2 - PubMed
  62. Shin H-Y, Oh J-M, Kim Y-S (2013) The functional role of prion protein (PrPC) on autophagy. Pathogens 2:436–445. https://doi.org/10.3390/pathogens2030436 - PubMed
  63. Gusel’nikova VV, Korzhevskiy DE (2015) NeuN As a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae 7:42–47 - PubMed
  64. Jalland CMO, Scheffler K, Benestad SL, Moldal T, Ersdal C, Gunnes G, Suganthan R, Bjørås M et al (2016) Neil3 induced neurogenesis protects against prion disease during the clinical phase. Sci Rep 6. https://doi.org/10.1038/srep37844 - PubMed
  65. Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H, Lehmann S, Favier A (2003) Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278:9064–9072. https://doi.org/10.1074/jbc.M211830200 - PubMed
  66. Le Dur A, Lai TL, Stinnakre MG, Laisne A, Chenais N, Rakotobe S, Passet B, Reine F et al (2017) Divergent prion strain evolution driven by PrP(C) expression level in transgenic mice. Nat Commun 8:14170. https://doi.org/10.1038/ncomms14170 - PubMed
  67. Lo RY-Y, Shyu W-C, Lin S-Z, Wang H-J, Chen S-S, Li H (2007) New molecular insights into cellular survival and stress responses: neuroprotective role of cellular prion protein (PrPC). Mol Neurobiol 35:236–244. https://doi.org/10.1007/s12035-007-8003-y - PubMed
  68. Yao H, Zhao D, Khan SH, Yang L (2013) Role of autophagy in prion protein-induced neurodegenerative diseases. Acta Biochim Biophys Sin 45:494–502. https://doi.org/10.1093/abbs/gmt022 - PubMed

Publication Types

Grant support