Display options
Share it on

Nanomedicine. 2021 Oct;37:102442. doi: 10.1016/j.nano.2021.102442. Epub 2021 Jul 17.

Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes.

Nanomedicine : nanotechnology, biology, and medicine

Alexander S Zhovmer, Morgan Chandler, Alexis Manning, Kirill A Afonin, Erdem D Tabdanov

Affiliations

  1. Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA. Electronic address: [email protected].
  2. Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
  3. Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
  4. Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA. Electronic address: [email protected].
  5. Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA. Electronic address: [email protected].

PMID: 34284132 PMCID: PMC8530550 DOI: 10.1016/j.nano.2021.102442

Abstract

Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.

Copyright © 2021 Elsevier Inc. All rights reserved.

Keywords: Mechanobiology; T cell; TCR mechanosensing

References

  1. Mol Ther. 2009 Aug;17(8):1453-64 - PubMed
  2. Annu Rev Neurosci. 2008;31:175-93 - PubMed
  3. Cold Spring Harb Symp Quant Biol. 2013;78:131-139 - PubMed
  4. Soft Matter. 2012 Jul 21;8(27):7197-7206 - PubMed
  5. Nat Nanotechnol. 2013 Apr;8(4):296-304 - PubMed
  6. Nat Commun. 2018 Sep 7;9(1):3630 - PubMed
  7. Nat Nanotechnol. 2018 Jul;13(7):610-617 - PubMed
  8. EMBO J. 2020 Mar 2;39(5):e102783 - PubMed
  9. Nucleic Acids Res. 2020 Nov 18;48(20):11785-11798 - PubMed
  10. Immunology. 2012 Sep;137(1):1-19 - PubMed
  11. Mol Biol Cell. 2018 Jun 1;29(11):1346-1358 - PubMed
  12. Immunol Invest. 2015;44(8):731-7 - PubMed
  13. ACS Nano. 2015 Jan 27;9(1):251-9 - PubMed
  14. Cell. 2014 Apr 10;157(2):357-368 - PubMed
  15. J Exp Biol. 2003 Jun;206(Pt 12):1977-84 - PubMed
  16. ACS Nano. 2020 Aug 25;14(8):9221-9227 - PubMed
  17. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2241-6 - PubMed
  18. N Engl J Med. 2011 Aug 25;365(8):725-33 - PubMed
  19. J Immunol. 2010 Jun 1;184(11):5959-63 - PubMed
  20. Nature. 1996 Nov 14;384(6605):134-41 - PubMed
  21. N Engl J Med. 2014 Oct 16;371(16):1507-17 - PubMed
  22. Sci Signal. 2019 Oct 22;12(604): - PubMed
  23. J Comput Chem. 2011 Jan 15;32(1):170-3 - PubMed
  24. J Cell Sci. 2013 Mar 1;126(Pt 5):1049-58 - PubMed
  25. Nano Lett. 2016 Mar 9;16(3):1746-53 - PubMed
  26. Sci Transl Med. 2011 Aug 10;3(95):95ra73 - PubMed
  27. Front Immunol. 2017 Sep 12;8:1125 - PubMed
  28. Nucleic Acids Res. 2019 Feb 20;47(3):1350-1361 - PubMed
  29. Biophys J. 2012 Jan 18;102(2):L5-7 - PubMed
  30. PLoS Pathog. 2010 May 27;6(5):e1000908 - PubMed
  31. Science. 2016 Apr 29;352(6285):595-9 - PubMed
  32. Nat Biotechnol. 2018 Feb;36(2):160-169 - PubMed
  33. PLoS One. 2011 May 10;6(5):e19680 - PubMed
  34. Elife. 2015 Mar 11;4: - PubMed
  35. Nat Protoc. 2011 Dec 01;6(12):2022-34 - PubMed
  36. J Immunol. 2012 Apr 15;188(8):3686-99 - PubMed
  37. Immunity. 2006 Jul;25(1):117-27 - PubMed
  38. J Allergy Clin Immunol. 2009 Apr;123(4):735-46; quiz 747-8 - PubMed
  39. Cell Rep. 2018 Oct 9;25(2):328-338.e5 - PubMed
  40. Nat Commun. 2018 Nov 20;9(1):4891 - PubMed
  41. Immunity. 2018 Nov 20;49(5):829-841.e6 - PubMed
  42. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10303-10305 - PubMed
  43. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5916-E5924 - PubMed
  44. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061906 - PubMed
  45. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16943-16948 - PubMed
  46. Nat Protoc. 2020 Nov;15(11):3678-3698 - PubMed
  47. Nucleic Acids Res. 2017 Feb 28;45(4):2210-2220 - PubMed
  48. Nat Immunol. 2006 Aug;7(8):803-9 - PubMed
  49. Front Immunol. 2018 Nov 15;9:2638 - PubMed
  50. Science. 2019 Sep 13;365(6458):1080-1081 - PubMed
  51. Nano Lett. 2018 Jul 11;18(7):4309-4321 - PubMed
  52. Nat Biotechnol. 2018 Sep;36(8):707-716 - PubMed
  53. Biophys J. 2012 Mar 21;102(6):1265-73 - PubMed
  54. Biophys J. 2006 Oct 15;91(8):3113-22 - PubMed
  55. Nat Immunol. 2009 May;10(5):531-9 - PubMed
  56. J Biol Chem. 2009 Nov 6;284(45):31028-37 - PubMed
  57. Molecules. 2019 Mar 20;24(6): - PubMed
  58. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8204-E8213 - PubMed
  59. Alzheimers Res Ther. 2014 Jan 30;6(1):7 - PubMed
  60. J Allergy Clin Immunol. 2007 Feb;119(2):280-94; quiz 295-6 - PubMed
  61. J Cell Sci. 2006 Nov 15;119(Pt 22):4589-98 - PubMed
  62. Biochemistry. 1995 Apr 4;34(13):4354-7 - PubMed
  63. ACS Sens. 2016;1(11):1295-1300 - PubMed
  64. Science. 2017 May 12;356(6338): - PubMed
  65. J Cell Biol. 2020 Feb 3;219(2): - PubMed
  66. Nat Rev Immunol. 2020 May;20(5):321-334 - PubMed
  67. Front Immunol. 2015 Sep 03;6:441 - PubMed
  68. Front Immunol. 2018 Apr 09;9:713 - PubMed
  69. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6493-8 - PubMed
  70. Adv Drug Deliv Rev. 2021 Jun;173:427-438 - PubMed
  71. Nat Nanotechnol. 2014 Aug;9(8):639-47 - PubMed
  72. Nucleic Acids Res. 2014 Feb;42(3):2085-97 - PubMed
  73. Curr Opin Immunol. 2002 Feb;14(1):52-65 - PubMed
  74. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5610-5 - PubMed
  75. Elife. 2017 Jun 08;6: - PubMed
  76. Front Immunol. 2012 Apr 18;3:76 - PubMed
  77. Front Immunol. 2012 Aug 17;3:230 - PubMed
  78. Proc Natl Acad Sci U S A. 2011 May 31;108(22):9089-94 - PubMed
  79. Sci Transl Med. 2015 Sep 2;7(303):303ra139 - PubMed
  80. Integr Biol (Camb). 2015 Oct;7(10):1272-84 - PubMed
  81. Cell. 2003 Nov 14;115(4):475-87 - PubMed
  82. Cell. 2018 Jul 26;174(3):672-687.e27 - PubMed
  83. Sci Immunol. 2019 Mar 22;4(33): - PubMed
  84. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7791-6 - PubMed
  85. Cell. 2016 Mar 24;165(1):100-110 - PubMed
  86. ACS Nano. 2019 Nov 26;13(11):12301-12321 - PubMed
  87. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1517-22 - PubMed
  88. Proc Natl Acad Sci U S A. 2009 May 5;106(18):7385-90 - PubMed
  89. PLoS One. 2017 Aug 17;12(8):e0183174 - PubMed
  90. J Cell Biol. 2012 May 28;197(5):643-58 - PubMed
  91. Mol Biol Cell. 2017 Nov 7;28(23):3229-3239 - PubMed
  92. Cell. 2017 Mar 23;169(1):108-119.e20 - PubMed
  93. Ther Drug Monit. 1995 Dec;17(6):615-20 - PubMed
  94. Science. 1996 Oct 11;274(5285):209-19 - PubMed
  95. Curr Biol. 2011 Jul 26;21(14):1167-75 - PubMed
  96. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5908-5913 - PubMed
  97. Immunol Cell Biol. 2016 Nov;94(10):981-993 - PubMed
  98. Nat Immunol. 2016 May;17(5):574-582 - PubMed
  99. PLoS One. 2012;7(2):e30704 - PubMed
  100. J Cell Biol. 2016 Jun 6;213(5):535-42 - PubMed
  101. Curr Opin Immunol. 2013 Jun;25(3):300-6 - PubMed
  102. Mol Cell Biol. 2014 Mar;34(6):955-64 - PubMed
  103. Methods Cell Biol. 2014;123:367-94 - PubMed

Publication Types

Grant support