Display options
Share it on

Mater Des. 2021 Nov 01;209. doi: 10.1016/j.matdes.2021.109977. Epub 2021 Jul 10.

Design optimization of a cardiovascular stent with application to a balloon expandable prosthetic heart valve.

Materials & design

Jonathan B Russ, Richard L Li, Abigail R Herschman, Haim Waisman, Vijay Vedula, Jeffrey W Kysar, David Kalfa

Affiliations

  1. Columbia University, Department of Civil Engineering and Engineering Mechanics, New York, NY, USA.
  2. Columbia University, Department of Mechanical Engineering, New York, NY, USA.
  3. Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA.
  4. Department of Otolaryngology Head and Neck Surgery, Columbia University Medical Center, New York, NY, USA.

PMID: 34366534 PMCID: PMC8336925 DOI: 10.1016/j.matdes.2021.109977

Abstract

A cardiovascular stent design optimization method is proposed with application to a pediatric balloon-expandable prosthetic heart valve. The prosthetic valved conduit may be expanded to a larger permanent diameter

Keywords: cardiovascular stent design; ductile failure; expandable heart valve; fatigue life; radial strength

References

  1. Heart Vessels. 2010 Jul;25(4):333-7 - PubMed
  2. Ann Biomed Eng. 2016 Feb;44(2):357-67 - PubMed
  3. Cardiovasc Eng Technol. 2019 Mar;10(1):10-21 - PubMed
  4. Polymers (Basel). 2017 Jan 17;9(1): - PubMed
  5. J Thorac Cardiovasc Surg. 1989 Nov;98(5 Pt 2):869-75 - PubMed
  6. J Biomech. 2005 Aug;38(8):1574-81 - PubMed
  7. Biomaterials. 2013 Nov;34(33):8049-60 - PubMed
  8. Med Eng Phys. 2013 Jan;35(1):125-30 - PubMed
  9. Biomech Model Mechanobiol. 2012 Jan;11(1-2):61-82 - PubMed
  10. J Am Coll Cardiol. 2002 Jun 19;39(12):1890-900 - PubMed
  11. PLoS One. 2019 Aug 26;14(8):e0218768 - PubMed
  12. PLoS One. 2015 Jun 17;10(6):e0130182 - PubMed
  13. Biomed Eng Online. 2016 Dec 28;15(Suppl 2):148 - PubMed
  14. J Biomech. 2010 Mar 3;43(4):687-93 - PubMed
  15. Biomaterials. 2019 Nov;221:119414 - PubMed
  16. Pediatr Clin North Am. 1990 Feb;37(1):25-43 - PubMed
  17. Biomaterials. 2011 Nov;32(31):7755-73 - PubMed
  18. Ann Biomed Eng. 2010 Sep;38(9):2829-40 - PubMed
  19. Cardiovasc Eng Technol. 2019 Jun;10(2):205-215 - PubMed
  20. Birth Defects Res A Clin Mol Teratol. 2012 Dec;94(12):970-83 - PubMed
  21. Sci Transl Med. 2020 Feb 19;12(531): - PubMed
  22. Med Biol Eng Comput. 2007 May;45(5):505-13 - PubMed
  23. J Pediatr. 2008 Dec;153(6):807-13 - PubMed
  24. J Biomech Eng. 2012 Jan;134(1):011002 - PubMed
  25. J Mech Behav Biomed Mater. 2017 Apr;68:252-264 - PubMed
  26. Ann Biomed Eng. 2017 Apr;45(4):853-872 - PubMed
  27. J Thorac Cardiovasc Surg. 2009 Jan;137(1):124-31 - PubMed
  28. J Biomech. 2013 Aug 9;46(12):2075-81 - PubMed
  29. Ann Biomed Eng. 2016 Feb;44(2):391-403 - PubMed
  30. Cardiol Young. 2019 Feb;29(2):235-237 - PubMed
  31. JAMA. 1991 Dec 25;266(24):3447-52 - PubMed
  32. J Biomech Eng. 2006 Oct;128(5):757-65 - PubMed
  33. J Biomech. 2012 Jul 26;45(11):1965-71 - PubMed
  34. Biomaterials. 2006 Mar;27(9):1988-2000 - PubMed
  35. Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:565-571 - PubMed
  36. J Biomech. 2002 Jun;35(6):803-11 - PubMed
  37. J Mech Behav Biomed Mater. 2019 Jan;89:9-12 - PubMed

Publication Types

Grant support