Display options
Share it on

Comput Struct Biotechnol J. 2021 Jun 10;19:3674-3681. doi: 10.1016/j.csbj.2021.06.013. eCollection 2021.

Structural binding site comparisons reveal Crizotinib as a novel LRRK2 inhibitor.

Computational and structural biotechnology journal

Sarah Naomi Bolz, Sebastian Salentin, Gary Jennings, V Joachim Haupt, Jared Sterneckert, Michael Schroeder

Affiliations

  1. Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, Dresden 01307, Germany.
  2. Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany.

PMID: 34285770 PMCID: PMC8258795 DOI: 10.1016/j.csbj.2021.06.013

Abstract

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a frequent cause of autosomal dominant Parkinson's disease (PD) and have been associated with familial and sporadic PD. Reducing the kinase activity of LRRK2 is a promising therapeutic strategy since pathogenic mutations increase the kinase activity. Several small-molecule LRRK2 inhibitors are currently under investigation for the treatment of PD. However, drug discovery and development are always accompanied by high costs and a risk of late failure. The use of already approved drugs for a new indication, which is known as drug repositioning, can reduce the cost and risk. In this study, we applied a structure-based drug repositioning approach to identify new LRRK2 inhibitors that are already approved for a different indication. In a large-scale structure-based screening, we compared the protein-ligand interaction patterns of known LRRK2 inhibitors with protein-ligand complexes in the PDB. The screening yielded 6 drug repositioning candidates. Two of these candidates, Sunitinib and Crizotinib, demonstrated an inhibition potency (IC50) and binding affinity (K

© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

Keywords: Binding site; Crizotinib; Drug repositioning; LRRK2; Protein–ligand interactions; Structure-based screening

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. J Med Chem. 2014 Feb 13;57(3):921-36 - PubMed
  2. JAMA. 2020 Mar 3;323(9):844-853 - PubMed
  3. Neurology. 2000 Oct 24;55(8):1216-8 - PubMed
  4. J Health Econ. 2016 May;47:20-33 - PubMed
  5. Lancet. 2017 Sep 23;390(10101):1550-1562 - PubMed
  6. Nucleic Acids Res. 2019 Jan 8;47(D1):D464-D474 - PubMed
  7. Target Oncol. 2012 Jun;7(2):117-25 - PubMed
  8. Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641 - PubMed
  9. Nature. 2020 Dec;588(7837):203-204 - PubMed
  10. Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109 - PubMed
  11. Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1579-1584 - PubMed
  12. Neurobiol Learn Mem. 2012 May;97(4):370-9 - PubMed
  13. ACS Chem Biol. 2012 Nov 16;7(11):1830-9 - PubMed
  14. J Cheminform. 2016 Jul 05;8:36 - PubMed
  15. Comput Struct Biotechnol J. 2020 Apr 13;18:1043-1055 - PubMed
  16. Int J Mol Sci. 2020 Nov 20;21(22): - PubMed
  17. Nature. 2020 Jun;582(7811):156-157 - PubMed
  18. Nat Rev Drug Discov. 2019 Jan;18(1):41-58 - PubMed
  19. Nat Rev Drug Discov. 2011 Jun;10(6):428-38 - PubMed
  20. Nat Chem Biol. 2011 Apr;7(4):203-5 - PubMed
  21. PLoS One. 2020 May 27;15(5):e0233089 - PubMed
  22. Biochem J. 2009 Oct 23;424(1):47-60 - PubMed
  23. Sci Rep. 2017 Mar 03;7:42717 - PubMed
  24. Cell. 2020 Sep 17;182(6):1508-1518.e16 - PubMed
  25. Neuron. 2004 Nov 18;44(4):601-7 - PubMed
  26. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 - PubMed
  27. Recent Results Cancer Res. 2018;211:57-65 - PubMed
  28. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1499-504 - PubMed
  29. Nat Rev Neurol. 2020 Feb;16(2):97-107 - PubMed
  30. Nat Med. 2020 Jun;26(6):869-877 - PubMed
  31. Lancet Neurol. 2020 Feb;19(2):170-178 - PubMed
  32. Lancet. 2015 Aug 29;386(9996):896-912 - PubMed
  33. Semin Cancer Biol. 2021 Jan;68:192-198 - PubMed
  34. Expert Rev Anticancer Ther. 2011 Feb;11(2):139-42 - PubMed
  35. Expert Opin Pharmacother. 2007 May;8(7):965-74 - PubMed
  36. Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940 - PubMed
  37. Nature. 2020 Jan;577(7792):706-710 - PubMed
  38. FEBS J. 2009 Jan;276(2):466-78 - PubMed
  39. J Clin Oncol. 2011 May 20;29(15):e443-5 - PubMed
  40. Methods Mol Biol. 2017;1607:627-641 - PubMed
  41. Sci Rep. 2017 Sep 12;7(1):11401 - PubMed
  42. Exp Neurol. 2017 Dec;298(Pt B):236-245 - PubMed
  43. Nature. 2020 Dec;588(7837):344-349 - PubMed
  44. Nucleic Acids Res. 2021 Jul 2;49(W1):W530-W534 - PubMed
  45. ChemMedChem. 2016 Jun 6;11(11):1117-21 - PubMed
  46. Biochem J. 2017 Mar 23;474(7):1273-1287 - PubMed
  47. Neuroreport. 1996 May 31;7(8):1405-8 - PubMed
  48. J Chem Inf Model. 2010 May 24;50(5):742-54 - PubMed
  49. Endocrinology. 1979 Sep;105(3):605-12 - PubMed
  50. Expert Rev Anti Infect Ther. 2004 Oct;2(5):671-84 - PubMed
  51. Expert Rev Anticancer Ther. 2017 Feb;17(2):129-142 - PubMed
  52. J Med Chem. 2015 May 14;58(9):3751-6 - PubMed
  53. J Neurol. 2015 Jul;262(7):1762-8 - PubMed
  54. Lancet Neurol. 2019 May;18(5):459-480 - PubMed
  55. J Med Chem. 2014 Jun 12;57(11):4720-44 - PubMed
  56. Nucleic Acids Res. 2015 Jul 1;43(W1):W443-7 - PubMed
  57. Ann Oncol. 2007 Sep;18 Suppl 10:x3-10 - PubMed
  58. Adv Neurobiol. 2017;14:3-30 - PubMed
  59. Nat Biotechnol. 2011 Oct 30;29(11):1039-45 - PubMed
  60. Clin Infect Dis. 2015 Apr 1;60(7):1026-32 - PubMed
  61. Drugs. 2019 Jan;79(1):93-98 - PubMed

Publication Types