Display options
Share it on

Cancer Chemother Pharmacol. 2021 Nov;88(5):795-804. doi: 10.1007/s00280-021-04332-z. Epub 2021 Jul 26.

Antitumor efficacy of CHMFL-KIT-110 solid dispersion in mouse xenograft models of human gastrointestinal stromal tumors.

Cancer chemotherapy and pharmacology

Shengfu Wang, Chunyan Wang, Xiao Wang, Xiang Wang, Lina Huang, Jiajie Kuai, Wei Wei, Xiaorong Lu, Shangxue Yan

Affiliations

  1. Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
  2. Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, 81 Meishan Road, Hefei, 230032, China.
  3. Hefei Blooming Drug Safety Evaluation Co., Ltd, 358 Ganquan Road, Hefei, 230031, China.
  4. Anhui Province Key Laboratory of Druggability Evaluation for New Drugs, 358 Ganquan Road, Hefei, 230031, China.
  5. Hefei Blooming Drug Safety Evaluation Co., Ltd, 358 Ganquan Road, Hefei, 230031, China. [email protected].
  6. Anhui Province Key Laboratory of Druggability Evaluation for New Drugs, 358 Ganquan Road, Hefei, 230031, China. [email protected].
  7. Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China. [email protected].
  8. Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, 81 Meishan Road, Hefei, 230032, China. [email protected].

PMID: 34309733 DOI: 10.1007/s00280-021-04332-z

Abstract

PURPOSE: CHMFL-KIT-110, a selective c-KIT kinase inhibitor for gastrointestinal stromal tumors (GISTs), possesses a poorly water-soluble, limiting the further development of the drug. This study was to investigate the antitumor efficacy of CHMFL-KIT-110 and CHMFL-KIT-110 solid dispersion (laboratory code: HYGT-110 SD) in GIST tumor xenograft models and to explore the PK/PD relationship of HYGT-110 SD.

METHODS: Plasma concentrations of HYGT-110 and HYGT-110 SD were determined by LC-MS/MS in KM mice. Antitumor activity was evaluated by measuring tumor volume and weight in c-KIT-dependent GIST xenograft models. PK/PD relationship was assessed by LC-MS/MS and Western Blot in the GIST-T1 xenografted mice.

RESULTS: HYGT-110 exhibited a low oral bioavailability (10.91%) in KM mice. Compared with HYGT-110 treatment, the C

CONCLUSIONS: In comparison with the HPMC formulation, both improved PK and PD characteristics of the solid dispersion formulation of CHMFL-KIT-110 were observed in in vivo animal experiments.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Antitumor activity; CHMFL-KIT-110; Gastrointestinal stromal tumors; PK/PD; Solid dispersion

References

  1. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580. https://doi.org/10.1126/science.279.5350.577 - PubMed
  2. Von Mehren M, Joensuu H (2018) Gastrointestinal stromal tumors. J Clin Oncol 36(2):136–143. https://doi.org/10.1200/JCO.2017.74.9705 - PubMed
  3. Cassier PA, Dufresne A, Arifi S, El Sayadi H, Ray-Coquard I, Bringuier PP, Scoazec JY, Alberti L, Blay JY (2008) Novel approaches to gastrointestinal stromal tumors resistant to imatinib and sunitinib. Curr Gastroenterol Rep 10(6):555–561. https://doi.org/10.1007/s11894-008-0102-z - PubMed
  4. Martin-Broto J, Moura DS (2020) New drugs in gastrointestinal stromal tumors. Curr Opin Oncol 32(4):314–320. https://doi.org/10.1097/CCO.0000000000000642 - PubMed
  5. George S, Wang Q, Heinrich MC, Corless CL, Zhu M, Butrynski JE, Morgan JA, Wagner AJ, Choy E, Tap WD, Yap JT, Van den Abbeele AD, Manola JB, Solomon SM, Fletcher JA, von Mehren M, Demetri GD (2012) Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol 30(19):2401–2407. https://doi.org/10.1200/JCO.2011.39.9394 - PubMed
  6. Gupta R, Maitland ML (2011) Sunitinib, hypertension, and heart failure: a model for kinase inhibitor-mediated cardiotoxicity. Curr Hypertens Rep 13(6):430–435. https://doi.org/10.1007/s11906-011-0229-4 - PubMed
  7. Rutkowski P, Stepniak J (2016) The safety of regorafenib for the treatment of gastrointestinal stromal tumors. Expert Opin Drug Saf 15(1):105–116. https://doi.org/10.1517/14740338.2016.1122754 - PubMed
  8. Wang Q, Liu F, Wang B, Zou F, Chen C, Liu X, Wang A, Qi S, Wang W, Qi Z, Zhao Z, Hu Z, Wang W, Wang L, Zhang S, Wang Y, Liu J, Liu Q (2016) Discovery of N-(3-((1-Isonicotinoylpiperidin-4-yl)oxy)-4-methylphenyl)-3-(trifluoromethyl)benz amide (CHMFL-KIT-110) as a selective, potent, and orally available type II c-KIT kinase inhibitor for gastrointestinal stromal tumors (GISTs). J Med Chem 59(8):3964–3979. https://doi.org/10.1021/acs.jmedchem.6b00200 - PubMed
  9. Huang Y, Dai WG (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4(1):18–25. https://doi.org/10.1016/j.apsb.2013.11.001 - PubMed
  10. Schittny A, Philipp-Bauer S, Detampel P, Huwyler J, Puchkov M (2020) Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J Control Release 320:214–225. https://doi.org/10.1016/j.jconrel.2020.01.031 - PubMed
  11. Wu Y, Chen D, Wang X, Sun H, Huo M (2020) Preparation, physicochemical properties and pharmacokinetics in rats of CHMFL-KIT-110 solid dispersions. J China Pharm Univ 51(06):688–695 ((In Chinese)) - PubMed
  12. Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40(12 Pt 2):1399–1418 - PubMed
  13. Tuntland T, Ethell B, Kosaka T, Blasco F, Zang RX, Jain M, Gould T, Hoffmaster K (2014) Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol 5:174. https://doi.org/10.3389/fphar.2014.00174 - PubMed
  14. Pilla Reddy V, Anjum R, Grondine M, Smith A, Bhavsar D, Barry E, Guichard SM, Shao W, Kettle JG, Brown C, Banks E, Jones RDO (2020) The pharmacokinetic-pharmacodynamic (PKPD) relationships of AZD3229, a Novel and selective inhibitor of KIT, in a range of mouse xenograft models of GIST. Clin Cancer Res 26(14):3751–3759. https://doi.org/10.1158/1078-0432.CCR-19-2848 - PubMed
  15. Floris G, Debiec-Rychter M, Wozniak A, Stefan C, Normant E, Faa G, Machiels K, Vanleeuw U, Sciot R, Schoffski P (2011) The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Mol Cancer Ther 10(10):1897–1908. https://doi.org/10.1158/1535-7163.MCT-11-0148 - PubMed
  16. Nagano T, Yasunaga M, Goto K, Kenmotsu H, Koga Y, Kuroda J, Nishimura Y, Sugino T, Nishiwaki Y, Matsumura Y (2009) Antitumor activity of NK012 combined with cisplatin against small cell lung cancer and intestinal mucosal changes in tumor-bearing mouse after treatment. Clin Cancer Res 15(13):4348–4355. https://doi.org/10.1158/1078-0432.CCR-08-3334 - PubMed
  17. Qin J, Yuan J, Li L, Liu H, Qin R, Qin W, Chen B, Wang H, Wu K (2009) In vitro and in vivo inhibitory effect evaluation of cyclooxygenase-2 inhibitors, antisense cyclooxygenase-2 cDNA, and their combination on the growth of human bladder cancer cells. Biomed Pharmacother 63(3):241–248. https://doi.org/10.1016/j.biopha.2008.04.007 - PubMed
  18. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9(1):327–337 - PubMed
  19. Wu Y, Wang B, Wang J, Qi S, Zou F, Qi Z, Liu F, Liu Q, Chen C, Hu C, Hu Z, Wang A, Wang L, Wang W, Ren T, Cai Y, Bai M, Liu Q, Liu J (2019) Discovery of 2-(4-Chloro-3-(trifluoromethyl)phenyl)-N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phen yl)acetamide (CHMFL-KIT-64) as a novel orally available potent inhibitor against broad-spectrum mutants of c-KIT kinase for gastrointestinal stromal tumors. J Med Chem 62(13):6083–6101. https://doi.org/10.1021/acs.jmedchem.9b00280 - PubMed
  20. Ferreira NH, Ribeiro AB, Rinaldi-Neto F, Fernandes FS, do Nascimento S, Braz WR, Nassar EJ, Tavares DC, (2020) Anti-melanoma activity of indomethacin incorporated into mesoporous silica nanoparticles. Pharm Res 37(9):172. https://doi.org/10.1007/s11095-020-02903-y - PubMed
  21. Trainor GL (2007) The importance of plasma protein binding in drug discovery. Expert Opin Drug Discov 2(1):51–64. https://doi.org/10.1517/17460441.2.1.51 - PubMed
  22. Guan J, Jin L, Liu Q, Xu H, Wu H, Zhang X, Mao S (2019) Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur J Pharm Sci 139:105043. https://doi.org/10.1016/j.ejps.2019.105043 - PubMed
  23. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77(6):841–852. https://doi.org/10.1016/0092-8674(94)90133-3 - PubMed
  24. Daouti S, Wang H, Li WH, Higgins B, Kolinsky K, Packman K, Specian A Jr, Kong N, Huby N, Wen Y, Xiang Q, Podlaski FJ, He Y, Fotouhi N, Heimbrook D, Niu H (2009) Characterization of a novel mitogen-activated protein kinase kinase 1/2 inhibitor with a unique mechanism of action for cancer therapy. Cancer Res 69(5):1924–1932. https://doi.org/10.1158/0008-5472.CAN-08-2627 - PubMed
  25. Liu L, Chen J, Cao M, Wang J, Wang S (2019) NO donor inhibits proliferation and induces apoptosis by targeting PI3K/AKT/mTOR and MEK/ERK pathways in hepatocellular carcinoma cells. Cancer Chemother Pharmacol 84(6):1303–1314. https://doi.org/10.1007/s00280-019-03965-5 - PubMed
  26. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ (2013) Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 39(8):935–946. https://doi.org/10.1016/j.ctrv.2013.03.009 - PubMed
  27. Bohnert T, Gan LS (2013) Plasma protein binding: from discovery to development. J Pharm Sci 102(9):2953–2994. https://doi.org/10.1002/jps.23614 - PubMed

Publication Types