Display options
Share it on

Br J Haematol. 2021 Nov;195(4):542-551. doi: 10.1111/bjh.17719. Epub 2021 Jul 27.

Liquid biopsy: a non-invasive approach for Hodgkin lymphoma genotyping.

British journal of haematology

Miguel Alcoceba, María García-Álvarez, M Carmen Chillón, Cristina Jiménez, Alejandro Medina, Alicia Antón, Oscar Blanco, Luis G Díaz, Pilar Tamayo, Verónica González-Calle, María Jesús Vidal, Rebeca Cuello, Francisco Javier Díaz Gálvez, José Antonio Queizán, Alejandro Martín, Marcos González, Ramón García-Sanz, M Eugenia Sarasquete

Affiliations

  1. Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Spain.
  2. Department of Pathology, University Hospital of Salamanca (HUS/IBSAL), Spain.
  3. Department of Nuclear Medicine, University Hospital of Salamanca (HUS/IBSAL),, Salamanca, Spain.
  4. Department of Hematology, University Hospital of León, Spain.
  5. Department of Hematology, University Hospital of Valladolid,, Valladolid, Spain.
  6. Department of Hematology, Hospital of Segovia,, Salamanca,, Spain.

PMID: 34312841 DOI: 10.1111/bjh.17719

Abstract

The Hodgkin lymphoma (HL) genomic landscape is hardly known due to the scarcity of tumour cells in the tissue. Liquid biopsy employing circulating tumour DNA (ctDNA) can emerge as an alternative tool for non-invasive genotyping. By using a custom next generation sequencing (NGS) panel in combination with unique molecule identifiers, we aimed to identify somatic variants in the ctDNA of 60 HL at diagnosis. A total of 277 variants were detected in 36 of the 49 samples (73·5%) with a good quality ctDNA sample. The median number of variants detected per patient was five (range 1-23) with a median variant allele frequency of 4·2% (0·84-28%). Genotyping revealed somatic variants in the following genes: SOCS1 (28%), IGLL5 (26%), TNFAIP3 (23%), GNA13 (23%), STAT6 (21%) and B2M (19%). Moreover, several poor prognosis features (high LDH, low serum albumin, B-symptoms, IPI ≥ 3 or at an advanced stage) were related to significantly higher amounts of ctDNA. Variant detection in ctDNA by NGS is a feasible approach to depict the genetic features of HL patients at diagnosis. Our data favour the implementation of liquid biopsy genotyping for the routine evaluation of HL patients.

© 2021 British Society for Haematology and John Wiley & Sons Ltd.

Keywords: Hodgkin lymphoma; circulating tumour DNA; liquid biopsy; next generation sequencing

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. - PubMed
  2. Küppers R, Engert A, Hansmann M-L. Hodgkin lymphoma. J Clin Invest. 2012;122(10):3439-47. - PubMed
  3. Mattox AK, Bettegowda C, Zhou S, Papadopoulos N, Kinzler KW, Vogelstein B. Applications of liquid biopsies for cancer. Sci Transl Med. 2019;11(507):eaay1984. - PubMed
  4. Spina V, Bruscaggin A, Cuccaro A, Martini M, Di Trani M, Forestieri G, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131(22):2413-25. - PubMed
  5. Bessi L, Viailly P-J, Bohers E, Ruminy P, Maingonnat C, Bertrand P, et al. Somatic mutations of cell-free circulating DNA detected by targeted next-generation sequencing and digital droplet PCR in classical Hodgkin lymphoma. Leuk Lymphoma. 2019;60(2):498-502. - PubMed
  6. Desch A-K, Hartung K, Botzen A, Brobeil A, Rummel M, Kurch L, et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia. 2020;34(1):151-66. - PubMed
  7. Camus V, Viennot M, Lequesne J, Viailly P-J, Bohers E, et al. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica. 2021;106(1):154-62. - PubMed
  8. Camus V, Miloudi H, Taly A, Sola B, Jardin F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol OncolJ Hematol Oncol. 2017;10(1):47. - PubMed
  9. Oki Y, Neelapu SS, Fanale M, Kwak LW, Fayad L, Rodriguez MA, et al. Detection of classical Hodgkin lymphoma specific sequence in peripheral blood using a next-generation sequencing approach. Br J Haematol. 2015;169(5):689-93. - PubMed
  10. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AFM, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155. - PubMed
  11. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-90. - PubMed
  12. Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125(7):1061-72. - PubMed
  13. Mata E, Díaz-López A, Martín-Moreno AM, Sánchez-Beato M, Varela I, Mestre MJ, et al. Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets. Oncotarget. 2017;8(67):111386-95. - PubMed
  14. Tiacci E, Ladewig E, Schiavoni G, Penson A, Fortini E, Pettirossi V, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454-65. - PubMed
  15. Liang WS, Vergilio J-A, Salhia B, Huang HJ, Oki Y, Garrido-Laguna I, et al. Comprehensive genomic profiling of hodgkin lymphoma reveals recurrently mutated genes and increased mutation burden. Oncologist. 2019;24(2):219-28. - PubMed
  16. “Picard Toolkit”. Broad Institute, GitHub Repository. Broad Institute; 2019 http://broadinstitute.github.io/picard/. - PubMed
  17. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv E-Prints. 2013;arXiv:1303.3997. - PubMed
  18. “fgbio”. MIT, GitHub Repository. MIT; 2019 https://github.com/fulcrumgenomics/fgbio. - PubMed
  19. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568-76. - PubMed
  20. Joos S, Küpper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549-52. - PubMed
  21. Mottok A, Steidl C. Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies. Blood. 2018;131(15):1654-65. - PubMed
  22. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205(4):498-506. - PubMed
  23. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339(21):1506-14. - PubMed

Publication Types

Grant support