Display options
Share it on

Nat Biomed Eng. 2021 Oct;5(10):1202-1216. doi: 10.1038/s41551-021-00777-y. Epub 2021 Aug 09.

Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers.

Nature biomedical engineering

Erika M J Siren, Haiming D Luo, Franklin Tam, Ashani Montgomery, Winnie Enns, Haisle Moon, Lyann Sim, Kevin Rey, Qiunong Guan, Jiao-Jing Wang, Christine M Wardell, Mahdis Monajemi, Majid Mojibian, Megan K Levings, Zheng J Zhang, Caigan Du, Stephen G Withers, Jonathan C Choy, Jayachandran N Kizhakkedathu

Affiliations

  1. Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
  2. Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
  3. Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
  4. Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
  5. Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
  6. Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA.
  7. BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
  8. Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada.
  9. School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
  10. Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [email protected].
  11. Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada. [email protected].
  12. Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada. [email protected].
  13. Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada. [email protected].
  14. School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada. [email protected].

PMID: 34373602 DOI: 10.1038/s41551-021-00777-y

Abstract

Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Chambers, D. C. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult lung and heart–lung transplant report—2018; focus theme: multiorgan transplantation. J. Heart Lung Transplant. 37, 1169–1183 (2018). - PubMed
  2. Moini, M., Schilsky, M. L. & Tichy, E. M. Review on immunosuppression in liver transplantation. World J. Hepatol. 7, 1355–1368 (2015). - PubMed
  3. Shivaswamy, V., Boerner, B. & Larsen, J. Post-transplant diabetes mellitus: causes, treatment, and impact on outcomes. Endocr. Rev. 37, 37–61 (2016). - PubMed
  4. Gutierrez-Dalmau, A. & Campistol, J. M. Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review. Drugs 67, 1167–1198 (2007). - PubMed
  5. Meier-Kriesche, H. U. et al. Immunosuppression: evolution in practice and trends, 1994–2004. Am. J. Transplant. 6, 1111–1131 (2006). - PubMed
  6. Kalluri, H. V. & Hardinger, K. L. Current state of renal transplant immunosuppression: present and future. World J. Transplant. 2, 51–68 (2012). - PubMed
  7. Gammon, J. M. & Jewell, C. M. Engineering immune tolerance with biomaterials. Adv. Healthc. Mater. 8, 1801419 (2019). - PubMed
  8. Uehara, M. et al. Nanodelivery of mycophenolate mofetil to the organ improves transplant vasculopathy. ACS Nano 13, 12393–12407 (2019). - PubMed
  9. Dane, K. Y. et al. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J. Control. Release 156, 154–160 (2011). - PubMed
  10. Azzi, J. et al. Targeted delivery of immunomodulators to lymph nodes. Cell Rep. 15, 1202–1213 (2016). - PubMed
  11. Wu, J. et al. Immune responsive release of tacrolimus to overcome organ transplant rejection. Adv. Mater. 30, 1805018 (2018). - PubMed
  12. Solhjou, Z. et al. Novel application of localized nanodelivery of anti-interleukin-6 protects organ transplant from ischemia-reperfusion injuries. Am. J. Transplant. 17, 2326–2337 (2017). - PubMed
  13. Lamprecht, A., Yamamoto, H., Takeuchi, H. & Kawashima, Y. A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J. Control. Release 104, 337–346 (2005). - PubMed
  14. Valenzuela, N. M. & Reed, E. F. Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies. J. Clin. Invest. 127, 2492–2504 (2017). - PubMed
  15. Salvadori, M., Rosso, G. & Bertoni, E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J. Transplant. 5, 52–67 (2015). - PubMed
  16. Incerti, D. et al. The lifetime health burden of delayed graft function in kidney transplant recipients in the United States. MDM Policy Pract. 3, 2381468318781811 (2018). - PubMed
  17. Benzimra, M., Calligaro, G. L. & Glanville, A. R. Acute rejection. J. Thorac. Dis. 9, 5440–5457 (2017). - PubMed
  18. Naito, H. et al. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med. Surg. 7, e501 (2020). - PubMed
  19. Charlton, M. et al. International liver transplantation society consensus statement on immunosuppression in liver transplant recipients. Transplantation 102, 727–743 (2018). - PubMed
  20. Sakai, K. et al. Protective effect and mechanism of IL-10 on renal ischemia–reperfusion injury. Lab. Investig. 99, 671–683 (2019). - PubMed
  21. Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020). - PubMed
  22. Harden, P. N. et al. Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients. Am. J. Transplant. 21, 1603–1611 (2021). - PubMed
  23. Peng, B., Ming, Y. & Yang, C. Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis. 9, 109 (2018). - PubMed
  24. Sasaki, H. et al. Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach. Hum. Immunol. 79, 258–265 (2018). - PubMed
  25. Lowsky, R. & Strober, S. Combined kidney and hematopoeitic cell transplantation to induce mixed chimerism and tolerance. Bone Marrow Transplant. 54, 793–797 (2019). - PubMed
  26. Lee, K. W. et al. Inducing transient mixed chimerism for allograft survival without maintenance immunosuppression with combined kidney and bone marrow transplantation: protocol optimization. Transplantation 104, 1472–1482 (2020). - PubMed
  27. Brasile, L., Glowacki, P., Castracane, J. & Stubenitsky, B. M. Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation 90, 1294–1298 (2010). - PubMed
  28. Bellini, M. I. & D’Andrea, V. Organ preservation: which temperature for which organ? J. Int. Med. Res. 47, 2323–2325 (2019). - PubMed
  29. Hosgood, S. A., Hoff, M. & Nicholson, M. L. Treatment of transplant kidneys during machine perfusion. Transpl. Int. 34, 224–232 (2021). - PubMed
  30. Rehm, M. et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116, 1896–1906 (2007). - PubMed
  31. Abrahimi, P., Liu, R. & Pober, J. S. Blood vessels in allotransplantation. Am. J. Transplant. 15, 1748–1754 (2015). - PubMed
  32. Piotti, G., Palmisano, A., Maggiore, U. & Buzio, C. Vascular endothelium as a target of immune response in renal transplant rejection. Front. Immunol. 5, 1–9 (2014). - PubMed
  33. Kollar, B. et al. The significance of vascular alterations in acute and chronic rejection for vascularized composite allotransplantation. J. Vasc. Res. 56, 163–180 (2019). - PubMed
  34. Rao, D. A. & Pober, J. S. Endothelial injury, alarmins, and allograft rejection. Crit. Rev. Immunol. 28, 229–248 (2008). - PubMed
  35. Colvin, R. B. & Smith, R. N. Antibody-mediated organ-allograft rejection. Nat. Rev. Immunol. 5, 807–817 (2005). - PubMed
  36. Cross, A. R., Glotz, D. & Mooney, N. The role of the endothelium during antibody-mediated rejection: from victim to accomplice. Front. Immunol. 9, 106 (2018). - PubMed
  37. Lin, C. W. & Ting, A. Y. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J. Am. Chem. Soc. 128, 4542–4543 (2006). - PubMed
  38. Abbina, S., Siren, E. M. J., Moon, H. & Kizhakkedathu, J. N. Surface engineering for cell-based therapies: techniques for manipulating mammalian cell surfaces. ACS Biomater. Sci. Eng. 4, 3658–3677 (2018). - PubMed
  39. Imran Ul-Haq, M., Lai, B. F. L., Chapanian, R. & Kizhakkedathu, J. N. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution. Biomaterials 33, 9135–9147 (2012). - PubMed
  40. MacAuley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014). - PubMed
  41. Duan, S. & Paulson, J. C. Siglecs as immune cell checkpoints in disease. Annu. Rev. Immunol. 38, 365–395 (2020). - PubMed
  42. Ramnath, R. et al. Matrix metalloproteinase 9-mediated shedding of syndecan 4 in response to tumor necrosis factor α: a contributor to endothelial cell glycocalyx dysfunction. FASEB J. 28, 4686–4699 (2014). - PubMed
  43. Aronson, F. R., Libby, P., Brandon, E. P., Janicka, M. W. & Mier, J. W. IL-2 rapidly induces natural killer cell adhesion to human endothelial cells. a potential mechanism for endothelial injury. J. Immunol. 141, 158–163 (1988). - PubMed
  44. Spence, S. et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci. Transl. Med. 7, 1–13 (2015). - PubMed
  45. Zaccai, N. R. et al. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure 11, 557–567 (2003). - PubMed
  46. Wu, J., Xie, A. & Chen, W. Cytokine regulation of immune tolerance. Burns Trauma 2, 2321–3868.124771 (2014). - PubMed
  47. Dawson, N. A. J. et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci. Transl. Med. 12, 3866 (2020). - PubMed
  48. Enns, W., von Rossum, A. & Choy, J. Mouse model of alloimmune-induced vascular rejection and transplant arteriosclerosis. J. Vis. Exp. 2015, 1–7 (2015). - PubMed
  49. Choy, J. C. et al. Granzyme B induces endothelial cell apoptosis and contributes to the development of transplant vascular disease. Am. J. Transplant. 5, 494–499 (2005). - PubMed
  50. von Rossum, A. et al. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death. Arterioscler. Thromb. Vasc. Biol. 34, 1290–1297 (2014). - PubMed
  51. Von Rossum, A. et al. Graft-derived IL-6 amplifies proliferation and survival of effector T cells that drive alloimmune-mediated vascular rejection. Transplantation 100, 2332–2341 (2016). - PubMed
  52. Duong Van Huyen, J. et al. The XVth Banff conference on allograft pathology the Banff workshop heart report: improving the diagnostic yield from endomyocardial biopsies and Quilty effect revisited. Am. J. Transplant. 20, 3308–3318 (2020). - PubMed
  53. Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10, 69–75 (2013). - PubMed
  54. Shoskes, D. A. & Cecka, J. M. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66, 1697–1701 (1998). - PubMed
  55. Qiu, L. et al. Kidney-intrinsic factors determine the severity of ischemia/reperfusion injury in a mouse model of delayed graft function. Kidney Int. 98, 1489–1501 (2020). - PubMed
  56. Rink, J. S. et al. Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular diseases. ACS Appl. Mater. Interfaces 10, 6904–6916 (2018). - PubMed
  57. Rogers, N. M., Zhang, Z. J., Wang, J. J., Thomson, A. W. & Isenberg, J. S. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion. Kidney Int. 90, 334–347 (2016). - PubMed
  58. Cheng, C. W. et al. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure. Kidney Int. 68, 2694–2703 (2005). - PubMed
  59. Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017). - PubMed
  60. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020). - PubMed
  61. Weinbaum, S., Zhang, X., Han, Y., Vink, H. & Cowin, S. C. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. USA 100, 7988–7995 (2003). - PubMed
  62. Karlhofer, F. M., Ribaudo, R. K. & Yokoyama, W. M. MHC class I alloantigen specificity of Ly-49 - PubMed
  63. Murphy, W. J., Kumar, V. & Bennett, M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med. 165, 1212–1217 (1987). - PubMed
  64. Zhang, Z.-X. et al. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J. Immunol. 181, 7489–7498 (2008). - PubMed
  65. Choy, J. C., Kerjner, A., Wong, B. W., McManus, B. M. & Granville, D. J. Perforin mediates endothelial cell death and resultant transplant vascular disease in cardiac allografts. Am. J. Pathol. 165, 127–133 (2004). - PubMed
  66. Chen, G.-Y. et al. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. eLife 3, e04066 (2014). - PubMed
  67. Perdicchio, M. et al. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc. Natl Acad. Sci. USA 113, 3329–3334 (2016). - PubMed
  68. Toubai, T. et al. Siglec-G represses DAMP-mediated effects on T cells. JCI Insight 2, e92293 (2017). - PubMed
  69. Wu, Y., Ren, D. & Chen, G.-Y. Siglec-E negatively regulates the activation of TLR4 by controlling its endocytosis. J. Immunol. 197, 3336–3347 (2016). - PubMed
  70. Uehara, S. et al. NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J. Immunol. 175, 3424–3430 (2005). - PubMed
  71. McNerney, M. E. et al. Role of natural killer cell subsets in cardiac allograft rejection. Am. J. Transplant. 6, 505–513 (2006). - PubMed
  72. Friend, P. J. Strategies in organ preservation—a new golden age. Transplantation 104, 1753–1755 (2020). - PubMed
  73. Van Nieuw Amerongen, G. P. & Van Hinsbergh, V. W. M. in Adhesion Protein Protocols. Methods in Molecular Biology Vol. 96 (eds Dejana, E. & Corada, M.) 183–189 (Humana Press, 1999). - PubMed
  74. Rey, K. et al. Disruption of the gut microbiota with antibiotics exacerbates acute vascular rejection. Transplantation 102, 1085–1095 (2018). - PubMed
  75. Cheng, C. H. et al. Murine full-thickness skin transplantation. J. Vis. Exp. 2017, 55105 (2017). - PubMed
  76. Pakyari, M. et al. A new method for skin grafting in murine model. Wound Repair Regen. 24, 695–704 (2016). - PubMed
  77. Zhang, Z. et al. Improved techniques for kidney transplantation in mice. Microsurgery 16, 103–109 (1995). - PubMed
  78. Lerret, N. M. et al. Recipient Myd88 deficiency promotes spontaneous resolution of kidney allograft rejection. J. Am. Soc. Nephrol. 26, 2753–2764 (2015). - PubMed

Publication Types

Grant support