Display options
Share it on

Int J Biomater. 2021 Jul 29;2021:3394348. doi: 10.1155/2021/3394348. eCollection 2021.

Chitosan and Curcumin Nanoformulations against Potential Cardiac Risks Associated with Hydroxyapatite Nanoparticles in Wistar Male Rats.

International journal of biomaterials

Israa F Mosa, Haitham H Abd, Abdelsalam Abuzreda, Amenh B Yousif, Nadhom Assaf

Affiliations

  1. Department of Nanotoxicology and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
  2. Department of Animal Physiology, Ministry of Education, Anbar, Iraq.
  3. University of Benghazi, Department of Health Safety and Environment (HSE), Arabian Gulf Oil Company (AGOCO), Benghazi, Libya.
  4. Department of Family and Community Medicine, Faculty of Medicine, University of Benghazi, Benghazi, Libya.
  5. Department of Toxicology, Ministry of Education, Anbar, Iraq.

PMID: 34373695 PMCID: PMC8349268 DOI: 10.1155/2021/3394348

Abstract

Nanoparticle-induced cardiovascular diseases have attracted much attention. Upon entering the blood circulation system, these particles have the potency to induce cardiomyocytes, leading to cardiac failure or myocardial ischemia, and the molecular mechanism remains to be completely clarified. In this study, the cardiac toxicity of rats orally exposed to hydroxyapatite nanoparticles (HAPNPs) has been observed through an increase in myocardial infarction serum markers including CK-MB and alterations in routine blood factors, expression of apoptosis-related protein P53, and increased levels of serum inflammatory markers represented by the tumor necrosis factor alpha and Interleukin-6, as well as a decline in heart antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed, as well as notable histological and histochemical alterations in the heart of these animals. mRNA and protein expressions of vascular endothelial growth factor (VEGF-A), cyclooxygenase-2 (COX-2), and atrial natriuretic factor (ANF) were elevated in the myocardium. However, the coadministration of chitosan nanoparticles (CsNPs) and/or curcumin nanoparticles (CurNPs) successfully modulated these alterations and induced activation in antioxidant parameters. The present data suggest that HAPNPs-induced apoptosis via the mitochondrial pathway may play a crucial role in cardiac tissue damage and the early treatment with CsNPs and CurNPs may protect the heart from infarction induced by HAPNPs toxic effect.

Copyright © 2021 Israa F. Mosa et al.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

References

  1. Biochim Biophys Acta. 2009 Jul;1787(7):811-7 - PubMed
  2. N Am J Med Sci. 2012 Nov;4(11):523-32 - PubMed
  3. EXS. 2005;(94):209-31 - PubMed
  4. Adv Exp Med Biol. 2007;595:105-25 - PubMed
  5. Oxid Med Cell Longev. 2019 May 7;2019:7847142 - PubMed
  6. Int J Nanomedicine. 2015 Feb 20;10:1463-77 - PubMed
  7. Nat Clin Pract Cardiovasc Med. 2009 Jan;6(1):36-44 - PubMed
  8. Appl Biochem Biotechnol. 2007 Jan;136(1):77-96 - PubMed
  9. Drug Chem Toxicol. 2019 Mar;42(2):194-202 - PubMed
  10. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):32-41 - PubMed
  11. Adv Colloid Interface Sci. 2017 Jun;244:281-295 - PubMed
  12. Int J Oncol. 2004 Apr;24(4):853-60 - PubMed
  13. Toxicol Lett. 2009 Jan 10;184(1):18-25 - PubMed
  14. Science. 2006 Feb 3;311(5761):622-7 - PubMed
  15. Small. 2008 Jan;4(1):26-49 - PubMed
  16. J Biol Chem. 1972 May 25;247(10):3170-5 - PubMed
  17. J Cell Mol Med. 2015 Aug;19(8):2032-5 - PubMed
  18. Surgeon. 2009 Jun;7(3):174-80 - PubMed
  19. Chem Biol Interact. 2012 Jul 30;199(1):49-61 - PubMed
  20. Toxicol In Vitro. 2009 Apr;23(3):520-30 - PubMed
  21. Adv Drug Deliv Rev. 2012 May 15;64(7):701-5 - PubMed
  22. J Biochem Mol Toxicol. 2018 Feb;32(2): - PubMed
  23. Cardiovasc Toxicol. 2013 Sep;13(3):194-207 - PubMed
  24. Biomaterials. 2003 Jul;24(16):2739-47 - PubMed
  25. Curr Pharm Des. 2015;21(30):4441-55 - PubMed
  26. Toxicol Res (Camb). 2020 Aug 03;9(4):493-508 - PubMed
  27. Acta Endocrinol (Copenh). 1991 Dec;125(6):694-9 - PubMed
  28. N Engl J Med. 2010 Mar 11;362(10):906-16 - PubMed
  29. J Am Soc Nephrol. 2003 Oct;14(10):2534-43 - PubMed
  30. Toxicol Res (Camb). 2019 Oct 22;8(6):939-952 - PubMed
  31. Lancet. 1997 May 3;349(9061):1307-10 - PubMed
  32. Biomatter. 2012 Oct-Dec;2(4):296-312 - PubMed
  33. Eur J Clin Chem Clin Biochem. 1994 Aug;32(8):639-55 - PubMed
  34. Int J Mol Sci. 2020 Jul 26;21(15): - PubMed
  35. Trends Mol Med. 2003 Feb;9(2):73-8 - PubMed
  36. J Agric Food Chem. 2001 May;49(5):2539-47 - PubMed
  37. Pharmacology. 1974;11(3):151-69 - PubMed
  38. Biomaterials. 2006 May;27(14):2798-805 - PubMed
  39. Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt A):3311-3322 - PubMed
  40. Biochim Biophys Acta. 1976 Oct 11;445(3):558-66 - PubMed
  41. Part Fibre Toxicol. 2016 Apr 30;13(1):22 - PubMed
  42. Exp Ther Med. 2019 Dec;18(6):4329-4339 - PubMed
  43. Circulation. 2003 Mar 18;107(10):1418-23 - PubMed
  44. Eur J Radiol. 2014 Jul;83(7):1190-1198 - PubMed
  45. Carcinogenesis. 2005 Aug;26(8):1436-45 - PubMed
  46. Acta Biomater. 2009 Jun;5(5):1708-15 - PubMed
  47. Cardiovasc Pathol. 2007 Jan-Feb;16(1):14-21 - PubMed
  48. Nanomedicine. 2007 Jun;3(2):132-7 - PubMed
  49. J Biol Chem. 1974 Nov 25;249(22):7130-9 - PubMed
  50. Biomed Res Int. 2015;2015:864946 - PubMed
  51. J Clin Invest. 2005 Mar;115(3):500-8 - PubMed
  52. J Clin Pathol. 2001 May;54(5):356-61 - PubMed
  53. Environ Health. 2013 May 28;12(1):43 - PubMed
  54. Nat Med. 2003 Jun;9(6):653-60 - PubMed

Publication Types