Display options
Share it on

Geroscience. 2021 Jul 22; doi: 10.1007/s11357-021-00420-3. Epub 2021 Jul 22.

Slowing down as we age: aging of the cardiac pacemaker's neural control.

GeroScience

Sabrina Choi, Matthias Baudot, Oscar Vivas, Claudia M Moreno

Affiliations

  1. Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA.
  2. Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA. [email protected].

PMID: 34292477 DOI: 10.1007/s11357-021-00420-3

Abstract

The cardiac pacemaker ignites and coordinates the contraction of the whole heart, uninterruptedly, throughout our entire life. Pacemaker rate is constantly tuned by the autonomous nervous system to maintain body homeostasis. Sympathetic and parasympathetic terminals act over the pacemaker cells as the accelerator and the brake pedals, increasing or reducing the firing rate of pacemaker cells to match physiological demands. Despite the remarkable reliability of this tissue, the pacemaker is not exempt from the detrimental effects of aging. Mammals experience a natural and continuous decrease in the pacemaker rate throughout the entire lifespan. Why the pacemaker rhythm slows with age is poorly understood. Neural control of the pacemaker is remodeled from birth to adulthood, with strong evidence of age-related dysfunction that leads to a downshift of the pacemaker. Such evidence includes remodeling of pacemaker tissue architecture, alterations in the innervation, changes in the sympathetic acceleration and the parasympathetic deceleration, and alterations in the responsiveness of pacemaker cells to adrenergic and cholinergic modulation. In this review, we revisit the main evidence on the neural control of the pacemaker at the tissue and cellular level and the effects of aging on shaping this neural control.

© 2021. The Author(s).

Keywords: Autonomic control; Cardiac aging; Cardiac pacemaker; Heart rate

References

  1. Peters CH, Sharpe EJ, Proenza C. Cardiac pacemaker activity and aging. Annu Rev Physiol. 2020;82:21–43. https://doi.org/10.1146/annurev-physiol-021119-034453 . - PubMed
  2. Ostchega Y, Porter KS, Hughes J, Dillon CF, Nwankwo T. Resting pulse rate reference data for children, adolescents, and adults: United States, 1999–2008. Natl Health Stat Report. 2011;41:1–16. - PubMed
  3. Larson ED, St Clair JR, Sumner WA, Bannister RA, Proenza C. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A. 2013;110(44):18011–6. https://doi.org/10.1073/pnas.1308477110 . - PubMed
  4. Anderson JB, Benson DW. Genetics of Sick Sinus Syndrome. Card Electrophysiol Clin. 2010;2(4):499–507. https://doi.org/10.1016/j.ccep.2010.09.001 . - PubMed
  5. Jensen PN, Gronroos NN, Chen LY, Folsom AR, deFilippi C, Heckbert SR, et al. Incidence of and risk factors for sick sinus syndrome in the general population. J Am Coll Cardiol. 2014;64(6):531–8. https://doi.org/10.1016/j.jacc.2014.03.056 . - PubMed
  6. Guyenet PG, Bayliss DA. Neural Control of Breathing and CO2 Homeostasis. Neuron. 2015;87(5):946–61. https://doi.org/10.1016/j.neuron.2015.08.001 . - PubMed
  7. Levy MN. Neural control of the heart: the importance of being ignorant. J Cardiovasc Electrophysiol. 1995;6(4):283–93. https://doi.org/10.1111/j.1540-8167.1995.tb00401.x . - PubMed
  8. Hutter OF, Trautwein W. Effect of vagal stimulation on the sinus venosus of the frog’s heart. Nature. 1955;176(4480):512–3. https://doi.org/10.1038/176512a0 . - PubMed
  9. Marcus B, Gillette PC, Garson A Jr. Intrinsic heart rate in children and young adults: an index of sinus node function isolated from autonomic control. Am Heart J. 1990;119(4):911–6. https://doi.org/10.1016/s0002-8703(05)80331-x . - PubMed
  10. Sharpe EJ, Larson ED, Proenza C. Cyclic AMP reverses the effects of aging on pacemaker activity and If in sinoatrial node myocytes. J Gen Physiol. 2017;149(2):237–47. https://doi.org/10.1085/jgp.201611674 . - PubMed
  11. Thery C, Gosselin B, Lekieffre J, Warembourg H. Pathology of sinoatrial node Correlations with electrocardiographic findings in 111 patients. Am Heart J. 1977;93(6):735–40. https://doi.org/10.1016/s0002-8703(77)80070-7 . - PubMed
  12. Evans R, Shaw DB. Pathological studies in sinoatrial disorder (sick sinus syndrome). Br Heart J. 1977;39(7):778–86. https://doi.org/10.1136/hrt.39.7.778 . - PubMed
  13. Shiraishi I, Takamatsu T, Minamikawa T, Onouchi Z, Fujita S. Quantitative histological analysis of the human sinoatrial node during growth and aging. Circulation. 1992;85(6):2176–84. https://doi.org/10.1161/01.cir.85.6.2176 . - PubMed
  14. Keith A, Flack M. The Form and Nature of the Muscular Connections between the Primary Divisions of the Vertebrate Heart. J Anat Physiol. 1907;41(Pt 3):172–89. - PubMed
  15. Oppenheimer BS, Oppenheimer A. Nerve Fibrils in the Sino-Auricular Node. J Exp Med. 1912;16(5):613–9. https://doi.org/10.1084/jem.16.5.613 . - PubMed
  16. Puech P, Esclavissat M, Sodi-Pallares D, Cisneros F. Normal auricular activation in the dog’s heart. Am Heart J. 1954;47(2):174–91. https://doi.org/10.1016/0002-8703(54)90248-3 . - PubMed
  17. Hudson RE. The human pacemaker and its pathology. Br Heart J. 1960;22:153–67. https://doi.org/10.1136/hrt.22.2.153 . - PubMed
  18. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47(4):658–87. https://doi.org/10.1016/s0008-6363(00)00135-8 . - PubMed
  19. Csepe TA, Zhao J, Hansen BJ, Li N, Sul LV, Lim P, et al. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog Biophys Mol Biol. 2016;120(1–3):164–78. https://doi.org/10.1016/j.pbiomolbio.2015.12.011 . - PubMed
  20. De Maziere AM, van Ginneken AC, Wilders R, Jongsma HJ, Bouman LN. Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. J Mol Cell Cardiol. 1992;24(6):567–78. https://doi.org/10.1016/0022-2828(92)91041-3 . - PubMed
  21. Mandrioli D, Ceci F, Balbi T, Ghimenton C, Pierini G. SEM, TEM, and IHC analysis of the sinus node and its implications for the cardiac conduction system. Anat Res Int. 2013;2013: 961459. https://doi.org/10.1155/2013/961459 . - PubMed
  22. DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature. 1986;324(6096):470–3. https://doi.org/10.1038/324470a0 . - PubMed
  23. Denyer JC, Brown HF. Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol. 1990;428:405–24. https://doi.org/10.1113/jphysiol.1990.sp018219 . - PubMed
  24. Verheijck EE, Wessels A, van Ginneken AC, Bourier J, Markman MW, Vermeulen JL, et al. Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition. Circulation. 1998;97(16):1623–31. https://doi.org/10.1161/01.cir.97.16.1623 . - PubMed
  25. Masson-Pevet MA, Bleeker WK, Besselsen E, Treytel BW, Jongsma HJ, Bouman LN. Pacemaker cell types in the rabbit sinus node: a correlative ultrastructural and electrophysiological study. J Mol Cell Cardiol. 1984;16(1):53–63. https://doi.org/10.1016/s0022-2828(84)80714-2 . - PubMed
  26. James TN, Sherf L, Fine G, Morales AR. Comparative ultrastructure of the sinus node in man and dog. Circulation. 1966;34(1):139–63. https://doi.org/10.1161/01.cir.34.1.139 . - PubMed
  27. Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM. The anatomy and physiology of the sinoatrial node–a contemporary review. Pacing Clin Electrophysiol. 2010;33(11):1392–406. https://doi.org/10.1111/j.1540-8159.2010.02838.x . - PubMed
  28. Kwong KF, Schuessler RB, Green KG, Laing JG, Beyer EC, Boineau JP, et al. Differential expression of gap junction proteins in the canine sinus node. Circ Res. 1998;82(5):604–12. https://doi.org/10.1161/01.res.82.5.604 . - PubMed
  29. Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem. 1999;47(7):907–18. https://doi.org/10.1177/002215549904700708 . - PubMed
  30. Kreuzberg MM, Sohl G, Kim JS, Verselis VK, Willecke K, Bukauskas FF. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res. 2005;96(11):1169–77. https://doi.org/10.1161/01.RES.0000169271.33675.05 . - PubMed
  31. Iyer R, Monfredi O, Lavorato M, Terasaki M, Franzini-Armstrong C. Ultrastructure of primary pacemaking cells in rabbit sino-atrial node cells indicates limited sarcoplasmic reticulum content. FASEB Bioadv. 2020;2(2):106–15. https://doi.org/10.1096/fba.2018-00079 . - PubMed
  32. Yanni J, Tellez JO, Sutyagin PV, Boyett MR, Dobrzynski H. Structural remodelling of the sinoatrial node in obese old rats. J Mol Cell Cardiol. 2010;48(4):653–62. https://doi.org/10.1016/j.yjmcc.2009.08.023 . - PubMed
  33. de Melo SR, de Souza RR, Mandarim-de-Lacerda CA. Stereologic study of the sinoatrial node of rats – age related changes. Biogerontology. 2002;3(6):383–90. https://doi.org/10.1023/a:1021376002896 . - PubMed
  34. Ho SY, Sanchez-Quintana D. Anatomy and pathology of the sinus node. J Interv Card Electrophysiol. 2016;46(1):3–8. https://doi.org/10.1007/s10840-015-0049-6 . - PubMed
  35. Hao X, Zhang Y, Zhang X, Nirmalan M, Davies L, Konstantinou D, et al. TGF-beta1-mediated fibrosis and ion channel remodeling are key mechanisms in producing the sinus node dysfunction associated with SCN5A deficiency and aging. Circ Arrhythm Electrophysiol. 2011;4(3):397–406. https://doi.org/10.1161/CIRCEP.110.960807 . - PubMed
  36. Glukhov AV, Kalyanasundaram A, Lou Q, Hage LT, Hansen BJ, Belevych AE, et al. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. Eur Heart J. 2015;36(11):686–97. https://doi.org/10.1093/eurheartj/eht452 . - PubMed
  37. Pauza DH, Rysevaite K, Inokaitis H, Jokubauskas M, Pauza AG, Brack KE, et al. Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy. J Mol Cell Cardiol. 2014;75:188–97. https://doi.org/10.1016/j.yjmcc.2014.07.016 . - PubMed
  38. Chow LT, Chow SS, Anderson RH, Gosling JA. Autonomic innervation of the human cardiac conduction system: changes from infancy to senility–an immunohistochemical and histochemical analysis. Anat Rec. 2001;264(2):169–82. https://doi.org/10.1002/ar.1158 . - PubMed
  39. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247(2):289–98. https://doi.org/10.1002/(SICI)1097-0185(199702)247:2%3c289::AID-AR15%3e3.0.CO;2-L . - PubMed
  40. Rysevaite K, Saburkina I, Pauziene N, Noujaim SF, Jalife J, Pauza DH. Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm. 2011;8(3):448–54. https://doi.org/10.1016/j.hrthm.2010.11.019 . - PubMed
  41. Edwards FR, Hirst GD, Klemm MF, Steele PA. Different types of ganglion cell in the cardiac plexus of guinea-pigs. J Physiol. 1995;486(Pt 2):453–71. https://doi.org/10.1113/jphysiol.1995.sp020825 . - PubMed
  42. Fedele L, Brand T. The intrinsic cardiac nervous system and its role in cardiac pacemaking and conduction. J Cardiovasc Dev Dis. 2020;7(4):54. https://doi.org/10.3390/jcdd7040054 . - PubMed
  43. Pauza DH, Rysevaite-Kyguoliene K, Vismantaite J, Brack KE, Inokaitis H, Pauza AG, et al. A combined acetylcholinesterase and immunohistochemical method for precise anatomical analysis of intrinsic cardiac neural structures. Ann Anat. 2014;196(6):430–40. https://doi.org/10.1016/j.aanat.2014.08.004 . - PubMed
  44. Schmidt RE, Dorsey DA, Parvin CA, Beaudet LN. Sympathetic neuroaxonal dystrophy in the aged rat pineal gland. Neurobiol Aging. 2006;27(10):1514–23. https://doi.org/10.1016/j.neurobiolaging.2005.08.005 . - PubMed
  45. Bellinger D, Tran L, Kang JI, Lubahn C, Felten DL, Lorton D. Age-related changes in noradrenergic sympathetic innervation of the rat spleen is strain dependent. Brain Behav Immun. 2002;16(3):247–61. https://doi.org/10.1006/brbi.2001.0626 . - PubMed
  46. Corbett EK, Mary DA, McWilliam PN, Batten TF. Age-related loss of cardiac vagal preganglionic neurones in spontaneously hypertensive rats. Exp Physiol. 2007;92(6):1005–13. https://doi.org/10.1113/expphysiol.2007.038216 . - PubMed
  47. Saburkina I, Gukauskiene L, Rysevaite K, Brack KE, Pauza AG, Pauziene N, et al. Morphological pattern of intrinsic nerve plexus distributed on the rabbit heart and interatrial septum. J Anat. 2014;224(5):583–93. https://doi.org/10.1111/joa.12166 . - PubMed
  48. Ai J, Gozal D, Li L, Wead WB, Chapleau MW, Wurster R, et al. Degeneration of vagal efferent axons and terminals in cardiac ganglia of aged rats. J Comp Neurol. 2007;504(1):74–88. https://doi.org/10.1002/cne.21431 . - PubMed
  49. Janig W. Neurocardiology: a neurobiologist’s perspective. J Physiol. 2016;594(14):3955–62. https://doi.org/10.1113/JP271895 . - PubMed
  50. Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20(9):1675–88. https://doi.org/10.1097/00004872-200209000-00002 . - PubMed
  51. Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978;274:621–37. https://doi.org/10.1113/jphysiol.1978.sp012170 . - PubMed
  52. Ng AV, Callister R, Johnson DG, Seals DR. Age and gender influence muscle sympathetic nerve activity at rest in healthy humans. Hypertension. 1993;21(4):498–503. https://doi.org/10.1161/01.hyp.21.4.498 . - PubMed
  53. Hart EC, Joyner MJ, Wallin BG, Johnson CP, Curry TB, Eisenach JH, et al. Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension. 2009;54(1):127–33. https://doi.org/10.1161/HYPERTENSIONAHA.109.131417 . - PubMed
  54. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension. 2005;45(4):522–5. https://doi.org/10.1161/01.HYP.0000160318.46725.46 . - PubMed
  55. Ziegler MG, Lake CR, Kopin IJ. Plasma noradrenaline increases with age. Nature. 1976;261(5558):333–5. https://doi.org/10.1038/261333a0 . - PubMed
  56. Goldstein DS, Lake CR, Chernow B, Ziegler MG, Coleman MD, Taylor AA, et al. Age-dependence of hypertensive-normotensive differences in plasma norepinephrine. Hypertension. 1983;5(1):100–4. https://doi.org/10.1161/01.hyp.5.1.100 . - PubMed
  57. Esler M, Hastings J, Lambert G, Kaye D, Jennings G, Seals DR. The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. Am J Physiol Regul Integr Comp Physiol. 2002;282(3):R909–16. https://doi.org/10.1152/ajpregu.00335.2001 . - PubMed
  58. Goldberg PB, Tumer N, Roberts J. Effect of increasing age on adrenergic control of heart rate in the rat. Exp Gerontol. 1988;23(2):115–25. https://doi.org/10.1016/0531-5565(88)90076-9 . - PubMed
  59. Lucini D, Cerchiello M, Pagani M. Selective reductions of cardiac autonomic responses to light bicycle exercise with aging in healthy humans. Auton Neurosci. 2004;110(1):55–63. https://doi.org/10.1016/j.autneu.2003.10.002 . - PubMed
  60. Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204–14. https://doi.org/10.4330/wjc.v7.i4.204 . - PubMed
  61. Rosenberg AA, Weiser-Bitoun I, Billman GE, Yaniv Y. Signatures of the autonomic nervous system and the heart’s pacemaker cells in canine electrocardiograms and their applications to humans. Sci Rep. 2020;10(1):9971. https://doi.org/10.1038/s41598-020-66709-z . - PubMed
  62. Kuga K, Yamaguchi I, Sugishita Y. Age-related changes of sinus node function and autonomic regulation in subjects without sinus node disease–assessment by pharmacologic autonomic blockade. Jpn Circ J. 1993;57(8):760–8. https://doi.org/10.1253/jcj.57.760 . - PubMed
  63. De Meersman RE, Stein PK. Vagal modulation and aging. Biol Psychol. 2007;74(2):165–73. https://doi.org/10.1016/j.biopsycho.2006.04.008 . - PubMed
  64. Baker SE, Limberg JK, Dillon GA, Curry TB, Joyner MJ, Nicholson WT. Aging Alters the Relative Contributions of the Sympathetic and Parasympathetic Nervous System to Blood Pressure Control in Women. Hypertension. 2018;72(5):1236–42. https://doi.org/10.1161/HYPERTENSIONAHA.118.11550 . - PubMed
  65. Comelli M, Meo M, Cervantes DO, Pizzo E, Plosker A, Mohler PJ, et al. Rhythm dynamics of the aging heart: an experimental study using conscious, restrained mice. Am J Physiol Heart Circ Physiol. 2020;319(4):H893–905. https://doi.org/10.1152/ajpheart.00379.2020 . - PubMed
  66. Ask TF, Lugo RG, Sutterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci. 2018;12:726. https://doi.org/10.3389/fnins.2018.00726 . - PubMed
  67. de Marneffe M, Gregoire JM, Waterschoot P, Kestemont MP. The sinus node and the autonomic nervous system in normals and in sick sinus patients. Acta Cardiol. 1995;50(4):291–308. - PubMed
  68. Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci. 2011;14(1):77–84. https://doi.org/10.1038/nn.2694 . - PubMed
  69. Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S, Barrere C, et al. L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc Res. 2016;109(3):451–61. https://doi.org/10.1093/cvr/cvw006 . - PubMed
  70. Vinogradova TM, Lakatta EG. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP-mediated PKA-dependent Ca2+ cycling with surface membrane channels. J Mol Cell Cardiol. 2009;47(4):456–74. https://doi.org/10.1016/j.yjmcc.2009.06.014 . - PubMed
  71. MacDonald EA, Rose RA, Quinn TA. Neurohumoral control of sinoatrial node activity and heart rate: insight from experimental models and findings from humans. Front Physiol. 2020;11:170. https://doi.org/10.3389/fphys.2020.00170 . - PubMed
  72. Ebert SN, Taylor DG. Catecholamines and development of cardiac pacemaking: an intrinsically intimate relationship. Cardiovasc Res. 2006;72(3):364–74. https://doi.org/10.1016/j.cardiores.2006.08.013 . - PubMed
  73. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82. https://doi.org/10.1152/physrev.00018.2007 . - PubMed
  74. Furukawa Y, Miyashita Y, Nakajima K, Hirose M, Kurogouchi F, Chiba S. Effects of verapamil, zatebradine, and E-4031 on the pacemaker location and rate in response to sympathetic stimulation in dog hearts. J Pharmacol Exp Ther. 1999;289(3):1334–42. - PubMed
  75. Wang L, Swirp S, Duff H. Age-dependent response of the electrocardiogram to K(+) channel blockers in mice. Am J Physiol Cell Physiol. 2000;278(1):C73-80. https://doi.org/10.1152/ajpcell.2000.278.1.C73 . - PubMed
  76. Saito K, Torda T, Potter WZ, Saavedra JM. Characterization of beta 1- and beta 2-adrenoceptor subtypes in the rat sinoatrial node and stellate ganglia by quantitative autoradiography. Neurosci Lett. 1989;96(1):35–41. https://doi.org/10.1016/0304-3940(89)90239-5 . - PubMed
  77. de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac beta-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol. 2018;9:904. https://doi.org/10.3389/fphar.2018.00904 . - PubMed
  78. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3’-kinase. Circ Res. 2000;87(12):1172–9. https://doi.org/10.1161/01.res.87.12.1172 . - PubMed
  79. Wang XJ, Ma MM, Zhou LB, Jiang XY, Hao MM, Teng RKF, et al. Autonomic ganglionic injection of alpha-synuclein fibrils as a model of pure autonomic failure alpha-synucleinopathy. Nat Commun. 2020;11(1):934. https://doi.org/10.1038/s41467-019-14189-9 . - PubMed
  80. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991;351(6322):145–7. https://doi.org/10.1038/351145a0 . - PubMed
  81. Del Villar SG, Voelker TL, Westhoff M, Reddy GR, Spooner HC, Navedo MF et al. β-Adrenergic control of sarcolemmal CaV1.2 abundance by small GTPase Rab proteins. Proc Natl Acad Sci. 2021;118(7):e2017937118. https://doi.org/10.1073/pnas.2017937118 . - PubMed
  82. La Raia PJ, Morkin E. Phosphorylation-dephosphorylation of cardiac microsomes: a possible mechanism for control of calcium uptake by cyclic AMP. Recent Adv Stud Cardiac Struct Metab. 1974;4:417–26. - PubMed
  83. Tada M, Kirchberger MA, Katz AM. Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem. 1975;250(7):2640–7. - PubMed
  84. Bogdanov KY, Vinogradova TM, Lakatta EG. Sinoatrial nodal cell ryanodine receptor and Na(+)-Ca(2+) exchanger: molecular partners in pacemaker regulation. Circ Res. 2001;88(12):1254–8. https://doi.org/10.1161/hh1201.092095 . - PubMed
  85. Wang X, Fitts RH. Cardiomyocyte slowly activating delayed rectifier potassium channel: regulation by exercise and beta-adrenergic signaling. J Appl Physiol. 1985;128(5):1177–85. https://doi.org/10.1152/japplphysiol.00802.2019 . - PubMed
  86. Kurokawa J, Motoike HK, Rao J, Kass RS. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A. 2004;101(46):16374–8. https://doi.org/10.1073/pnas.0405583101 . - PubMed
  87. De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M, Catterall WA. Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3’,5’-cyclic monophosphate-dependent protein kinase. Biochemistry. 1996;35(32):10392–402. https://doi.org/10.1021/bi953023c . - PubMed
  88. Liu G, Papa A, Katchman AN, Zakharov SI, Roybal D, Hennessey JA, et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature. 2020;577(7792):695–700. https://doi.org/10.1038/s41586-020-1947-z . - PubMed
  89. Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, et al. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol. 2001;153(4):699–708. https://doi.org/10.1083/jcb.153.4.699 . - PubMed
  90. Vinogradova TM, Bogdanov KY, Lakatta EG. beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res. 2002;90(1):73–9. https://doi.org/10.1161/hh0102.102271 . - PubMed
  91. Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron. 1998;20(1):103–14. https://doi.org/10.1016/s0896-6273(00)80438-9 . - PubMed
  92. Ashton JL, Trew ML, LeGrice IJ, Paterson DJ, Paton JF, Gillis AM, et al. Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance. J Physiol. 2019;597(13):3297–313. https://doi.org/10.1113/JP276876 . - PubMed
  93. Hardouin S, Bourgeois F, Toraasson M, Oubenaissa A, Elalouf JM, Fellmann D, et al. Beta-adrenergic and muscarinic receptor mRNA accumulation in the sinoatrial node area of adult and senescent rat hearts. Mech Ageing Dev. 1998;100(3):277–97. https://doi.org/10.1016/s0047-6374(97)00142-5 . - PubMed
  94. Tellez JO, McZewski M, Yanni J, Sutyagin P, Mackiewicz U, Atkinson A, et al. Ageing-dependent remodelling of ion channel and Ca2+ clock genes underlying sino-atrial node pacemaking. Exp Physiol. 2011;96(11):1163–78. https://doi.org/10.1113/expphysiol.2011.057752 . - PubMed
  95. Christou DD, Seals DR. Decreased maximal heart rate with aging is related to reduced {beta}-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J Appl Physiol. 1985;105(1):24–9. https://doi.org/10.1152/japplphysiol.90401.2008 . - PubMed
  96. Yaniv Y, Ahmet I, Tsutsui K, Behar J, Moen JM, Okamoto Y, et al. Deterioration of autonomic neuronal receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age-associated alterations in heart rate variability in vivo. Aging Cell. 2016;15(4):716–24. https://doi.org/10.1111/acel.12483 . - PubMed
  97. Jones SA, Boyett MR, Lancaster MK. Declining into failure: the age-dependent loss of the L-type calcium channel within the sinoatrial node. Circulation. 2007;115(10):1183–90. https://doi.org/10.1161/CIRCULATIONAHA.106.663070 . - PubMed
  98. Alghamdi AM, Boyett MR, Hancox JC, Zhang H. Cardiac pacemaker dysfunction arising from different studies of ion channel remodeling in the aging rat heart. Front Physiol. 2020;11: 546508. https://doi.org/10.3389/fphys.2020.546508 . - PubMed
  99. Behar J, Yaniv Y. Age-related pacemaker deterioration is due to impaired intracellular and membrane mechanisms: Insights from numerical modeling. J Gen Physiol. 2017;149(10):935–49. https://doi.org/10.1085/jgp.201711792 . - PubMed
  100. Braunwald E. Shattuck lecture–cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997;337(19):1360–9. https://doi.org/10.1056/NEJM199711063371906 . - PubMed
  101. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003;107(2):346–54. https://doi.org/10.1161/01.cir.0000048893.62841.f7 . - PubMed
  102. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68(6):1560–8. https://doi.org/10.1161/01.res.68.6.1560 . - PubMed
  103. Santhanakrishnan R, Wang N, Larson MG, Magnani JW, McManus DD, Lubitz SA, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 2016;133(5):484–92. https://doi.org/10.1161/CIRCULATIONAHA.115.018614 . - PubMed
  104. Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta. 2015;1847(11):1424–33. https://doi.org/10.1016/j.bbabio.2015.07.009 . - PubMed
  105. Shinohara T, Park HW, Han S, Shen MJ, Maruyama M, Kim D, et al. Ca2+ clock malfunction in a canine model of pacing-induced heart failure. Am J Physiol Heart Circ Physiol. 2010;299(6):H1805–11. https://doi.org/10.1152/ajpheart.00723.2010 . - PubMed
  106. Sridhar A, Nishijima Y, Terentyev D, Khan M, Terentyeva R, Hamlin RL, et al. Chronic heart failure and the substrate for atrial fibrillation. Cardiovasc Res. 2009;84(2):227–36. https://doi.org/10.1093/cvr/cvp216 . - PubMed
  107. Melenovsky V, Hwang SJ, Redfield MM, Zakeri R, Lin G, Borlaug BA. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ Heart Fail. 2015;8(2):295–303. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001667 . - PubMed
  108. Sanders P, Kistler PM, Morton JB, Spence SJ, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation. 2004;110(8):897–903. https://doi.org/10.1161/01.CIR.0000139336.69955.AB . - PubMed
  109. Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE. Ionic remodeling of sinoatrial node cells by heart failure. Circulation. 2003;108(6):760–6. https://doi.org/10.1161/01.CIR.0000083719.51661.B9 . - PubMed
  110. Chang SL, Chuang HL, Chen YC, Kao YH, Lin YK, Yeh YH, et al. Heart failure modulates electropharmacological characteristics of sinoatrial nodes. Exp Ther Med. 2017;13(2):771–9. https://doi.org/10.3892/etm.2016.4015 . - PubMed
  111. Hadian D, Zipes DP, Olgin JE, Miller JM. Short-term rapid atrial pacing produces electrical remodeling of sinus node function in humans. J Cardiovasc Electrophysiol. 2002;13(6):584–6. https://doi.org/10.1046/j.1540-8167.2002.00584.x . - PubMed
  112. Kezerashvili A, Krumerman AK, Fisher JD. Sinus node dysfunction in atrial fibrillation: cause or effect? J Atr Fibrillation. 2008;1(3):30. https://doi.org/10.4022/jafib.30 . - PubMed
  113. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell. 2013;12(5):851–62. https://doi.org/10.1111/acel.12109 . - PubMed
  114. Quarles E, Basisty N, Chiao YA, Merrihew G, Gu H, Sweetwyne MT, et al. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell. 2020;19(2): e13086. https://doi.org/10.1111/acel.13086 . - PubMed
  115. Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, et al. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2019;316(5):H1124–40. https://doi.org/10.1152/ajpheart.00776.2018 . - PubMed
  116. Schuessler RB, Boineau JP, Bromberg BI. Origin of the sinus impulse. J Cardiovasc Electrophysiol. 1996;7(3):263–74. https://doi.org/10.1111/j.1540-8167.1996.tb00524.x . - PubMed
  117. Beau SL, Hand DE, Schuessler RB, Bromberg BI, Kwon B, Boineau JP, et al. Relative densities of muscarinic cholinergic and beta-adrenergic receptors in the canine sinoatrial node and their relation to sites of pacemaker activity. Circ Res. 1995;77(5):957–63. https://doi.org/10.1161/01.res.77.5.957 . - PubMed
  118. Klemm M, Hirst GD, Campbell G. Structure of autonomic neuromuscular junctions in the sinus venosus of the toad. J Auton Nerv Syst. 1992;39(2):139–50. https://doi.org/10.1016/0165-1838(92)90054-k . - PubMed
  119. Li H, Hastings MH, Rhee J, Trager LE, Roh JD, Rosenzweig A. Targeting Age-Related Pathways in Heart Failure. Circ Res. 2020;126(4):533–51. https://doi.org/10.1161/CIRCRESAHA.119.315889 . - PubMed
  120. Moro-Garcia MA, Echeverria A, Galan-Artimez MC, Suarez-Garcia FM, Solano-Jaurrieta JJ, Avanzas-Fernandez P, et al. Immunosenescence and inflammation characterize chronic heart failure patients with more advanced disease. Int J Cardiol. 2014;174(3):590–9. https://doi.org/10.1016/j.ijcard.2014.04.128 . - PubMed
  121. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://doi.org/10.1038/nature16932 . - PubMed
  122. Osadchii OE. Reduced intrinsic heart rate is associated with reduced arrhythmic susceptibility in guinea-pig heart. Scand Cardiovasc J. 2014;48(6):357–67. https://doi.org/10.3109/14017431.2014.976256 . - PubMed
  123. Noujaim SF, Lucca E, Munoz V, Persaud D, Berenfeld O, Meijler FL, et al. From mouse to whale: a universal scaling relation for the PR Interval of the electrocardiogram of mammals. Circulation. 2004;110(18):2802–8. https://doi.org/10.1161/01.CIR.0000146785.15995.67 . - PubMed
  124. Jiang M, Murias JM, Chrones T, Sims SM, Lui E, Noble EG. American ginseng acutely regulates contractile function of rat heart. Front Pharmacol. 2014;5:43. https://doi.org/10.3389/fphar.2014.00043 . - PubMed
  125. Mischke K, Zarse M, Knackstedt C, Schauerte P. Rate control in atrial fibrillation by cooling: effect of temperature on dromotropy in perfused rabbit hearts. Cardiol Res Pract. 2011;2011: 162984. https://doi.org/10.4061/2011/162984 . - PubMed
  126. Peper ES, Leopaldi AM, van Tuijl S, Coolen BF, Strijkers GJ, Baan J Jr, et al. An isolated beating pig heart platform for a comprehensive evaluation of intracardiac blood flow with 4D flow MRI: a feasibility study. Eur Radiol Exp. 2019;3(1):40. https://doi.org/10.1186/s41747-019-0114-5 . - PubMed
  127. Baudot M, Torre E, Bidaud I, Louradour J, Torrente AG, Fossier L, et al. Concomitant genetic ablation of L-type Cav1.3 (alpha1D) and T-type Cav3.1 (alpha1G) Ca(2+) channels disrupts heart automaticity. Sci Rep. 2020;10(1):18906. https://doi.org/10.1038/s41598-020-76049-7 . - PubMed
  128. Opthof T. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 2000;45(1):173–6. - PubMed
  129. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006;98(11):1422–30. https://doi.org/10.1161/01.RES.0000225862.14314.49 . - PubMed
  130. Bolter CP, Atkinson KJ. Maximum heart rate responses to exercise and isoproterenol in the trained rat. Am J Physiol. 1988;254(5 Pt 2):R834–9. https://doi.org/10.1152/ajpregu.1988.254.5.R834 . - PubMed
  131. Woulfe KC, Wilson CE, Nau S, Chau S, Phillips EK, Zang S, et al. Acute isoproterenol leads to age-dependent arrhythmogenesis in guinea pigs. Am J Physiol Heart Circ Physiol. 2018;315(4):H1051–62. https://doi.org/10.1152/ajpheart.00061.2018 . - PubMed
  132. Lang D, Petrov V, Lou Q, Osipov G, Efimov IR. Spatiotemporal control of heart rate in a rabbit heart. J Electrocardiol. 2011;44(6):626–34. https://doi.org/10.1016/j.jelectrocard.2011.08.010 . - PubMed
  133. Fox SM 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–32. - PubMed
  134. Semelka M, Gera J, Usman S. Sick sinus syndrome: a review. Am Fam Physician. 2013;87(10):691–6. - PubMed
  135. Monfredi O, Boyett MR. Sick sinus syndrome and atrial fibrillation in older persons - A view from the sinoatrial nodal myocyte. J Mol Cell Cardiol. 2015;83:88–100. https://doi.org/10.1016/j.yjmcc.2015.02.003 . - PubMed
  136. Huang X, Yang P, Yang Z, Zhang H, Ma A. Age-associated expression of HCN channel isoforms in rat sinoatrial node. Exp Biol Med (Maywood). 2016;241(3):331–9. https://doi.org/10.1177/1535370215603515 . - PubMed
  137. Jones SA, Lancaster MK, Boyett MR. Ageing-related changes of connexins and conduction within the sinoatrial node. J Physiol. 2004;560(Pt 2):429–37. https://doi.org/10.1113/jphysiol.2004.072108 . - PubMed
  138. Alings AM, Bouman LN. Electrophysiology of the ageing rabbit and cat sinoatrial node–a comparative study. Eur Heart J. 1993;14(9):1278–88. https://doi.org/10.1093/eurheartj/14.9.1278 . - PubMed

Publication Types

Grant support