Display options
Share it on

JCI Insight. 2021 Sep 22;6(18). doi: 10.1172/jci.insight.151496.

Identifying dominant-negative actions of a dopamine transporter variant in patients with parkinsonism and neuropsychiatric disease.

JCI insight

Freja Herborg, Kathrine L Jensen, Sasha Tolstoy, Natascha V Arends, Leonie P Posselt, Aparna Shekar, Jenny I Aguilar, Viktor K Lund, Kevin Erreger, Mattias Rickhag, Matthew D Lycas, Markus N Lonsdale, Troels Rahbek-Clemmensen, Andreas T Sørensen, Amy H Newman, Annemette Løkkegaard, Ole Kjærulff, Thomas Werge, Lisbeth B Møller, Heinrich Jg Matthies, Aurelio Galli, Lena E Hjermind, Ulrik Gether

Affiliations

  1. Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  2. Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
  3. Department of Clinical Physiology and Nuclear Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
  4. National Institute on Drug Abuse Intramural Research Program, NIH, Baltimore, Maryland, USA.
  5. Department of Neurology, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
  6. Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark.
  7. Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
  8. Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark.
  9. Center for Applied Human Genetics, Kennedy Center, Copenhagen University Hospital, Glostrup, Denmark.
  10. Department of Surgery, University of Alabama, Birmingham, Alabama, USA.
  11. Danish Dementia Research Centre, Clinic of Neurogenetics, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
  12. Department of Cellular and Molecular Medicine, Section of Neurogenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

PMID: 34375312 PMCID: PMC8492322 DOI: 10.1172/jci.insight.151496

Abstract

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.

Keywords: Cell Biology; Molecular genetics; Neuroscience; Parkinson disease; Psychiatric diseases

References

  1. Neuropharmacology. 2000 Feb 14;39(4):578-85 - PubMed
  2. J Vis Exp. 2017 Sep 21;(127): - PubMed
  3. Science. 2000 Feb 18;287(5456):1265-9 - PubMed
  4. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4405-10 - PubMed
  5. J Neurodev Disord. 2012 Jul 06;4(1):19 - PubMed
  6. Brain. 2014 Apr;137(Pt 4):1107-19 - PubMed
  7. Neuron. 2011 Feb 24;69(4):628-49 - PubMed
  8. J Vis Exp. 2013 Apr 24;(74):e50339 - PubMed
  9. PLoS One. 2012;7(7):e42102 - PubMed
  10. Ann Hum Genet. 2020 Jul;84(4):315-323 - PubMed
  11. Nat Chem Biol. 2009 Feb;5(2):118-26 - PubMed
  12. J Neurosci. 2004 Aug 4;24(31):7024-36 - PubMed
  13. Neuron. 2010 Oct 21;68(2):192-5 - PubMed
  14. J Clin Invest. 2014 Jul;124(7):3107-20 - PubMed
  15. Science. 2012 Nov 16;338(6109):949-53 - PubMed
  16. J Neurosci. 2012 Apr 18;32(16):5385-97 - PubMed
  17. Mol Psychiatry. 2013 Jul;18(7):824-33 - PubMed
  18. J Biol Chem. 2003 Jan 24;278(4):2731-9 - PubMed
  19. J Clin Invest. 2019 May 16;129(8):3407-3419 - PubMed
  20. J Biol Chem. 2004 Jul 16;279(29):30760-70 - PubMed
  21. Nat Rev Genet. 2012 Jul 10;13(8):537-51 - PubMed
  22. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3853-3862 - PubMed
  23. Neuron. 2001 Apr;30(1):121-34 - PubMed
  24. Nature. 2020 May;581(7809):434-443 - PubMed
  25. J Neurosci. 1997 Feb 15;17(4):1217-25 - PubMed
  26. Brain Neurosci Adv. 2019 May 30;2: - PubMed
  27. J Neurosci. 2009 May 27;29(21):6794-808 - PubMed
  28. J Neurosci. 2006 Aug 2;26(31):8195-205 - PubMed
  29. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15480-5 - PubMed
  30. Nature. 1996 Feb 15;379(6566):606-12 - PubMed
  31. Trends Neurosci. 2007 May;30(5):188-93 - PubMed
  32. Bipolar Disord. 2009 Dec;11(8):787-806 - PubMed
  33. EBioMedicine. 2015 Feb;2(2):135-146 - PubMed
  34. Neuropharmacology. 2005 Nov;49(6):724-36 - PubMed
  35. Biol Psychiatry. 2011 Jun 15;69(12):e145-57 - PubMed
  36. Nat Neurosci. 2014 Jun;17(6):782-90 - PubMed
  37. Basal Ganglia. 2016 Aug;6(3):123-148 - PubMed
  38. Hum Genet. 2009 Jul;126(1):51-90 - PubMed
  39. J Nucl Med. 2013 Aug;54(8):1331-8 - PubMed
  40. J Med Chem. 2005 Dec 1;48(24):7513-6 - PubMed
  41. Mol Psychiatry. 2000 May;5(3):275-82 - PubMed
  42. Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):E4779-88 - PubMed
  43. J Clin Invest. 2018 Feb 1;128(2):774-788 - PubMed
  44. Neuropediatrics. 2017 Feb;48(1):49-52 - PubMed
  45. J Psychiatr Res. 2015 Jan;60:1-13 - PubMed
  46. Nucleic Acids Res. 2017 Jan 4;45(D1):D896-D901 - PubMed
  47. Nat Commun. 2013;4:1580 - PubMed
  48. Lancet Neurol. 2011 Jan;10(1):54-62 - PubMed
  49. Front Neurol. 2018 Apr 09;9:228 - PubMed
  50. Mol Psychiatry. 2013 Dec;18(12):1315-23 - PubMed
  51. Br J Psychiatry. 2014 Feb;204(2):108-14 - PubMed
  52. Nat Neurosci. 2018 Jun;21(6):787-793 - PubMed
  53. Mol Psychiatry. 2018 Jan;23(1):6-14 - PubMed
  54. J Parkinsons Dis. 2019;9(1):17-29 - PubMed
  55. Neuroscience. 2019 Mar 1;401:106-116 - PubMed
  56. J Clin Invest. 2009 Jun;119(6):1455-8 - PubMed
  57. J Biol Chem. 2018 May 11;293(19):7250-7262 - PubMed
  58. Pharmacol Rev. 2011 Sep;63(3):585-640 - PubMed
  59. Schizophr Bull. 2009 May;35(3):549-62 - PubMed
  60. Transl Psychiatry. 2014 Oct 14;4:e464 - PubMed
  61. J Clin Invest. 2009 Jun;119(6):1595-603 - PubMed
  62. Neurosci Lett. 2014 Apr 3;564:99-104 - PubMed
  63. Mol Interv. 2004 Feb;4(1):38-47 - PubMed
  64. Nature. 2019 Jul;571(7766):565-569 - PubMed

Publication Types

Grant support