Display options
Share it on

Eur J Appl Physiol. 2021 Nov;121(11):3095-3102. doi: 10.1007/s00421-021-04765-7. Epub 2021 Jul 28.

The influence of short-term high-altitude acclimatization on cerebral and leg tissue oxygenation post-orthostasis.

European journal of applied physiology

Masahiro Horiuchi, Kazunobu Okazaki, Katsumi Asano, Alexander T Friend, Gabriella M K Rossetti, Samuel J Oliver

Affiliations

  1. Division of Human Environmental Science, Mount Fuji Research Institute, Fuji-yoshida-city, Japan. [email protected].
  2. Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan.
  3. Non-Profit Organization, Mount Fuji Research Station, Tokyo, Japan.
  4. School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK.
  5. Center for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, UK.

PMID: 34319446 DOI: 10.1007/s00421-021-04765-7

Abstract

PURPOSE: Orthostasis at sea level decreases brain tissue oxygenation and increases risk of syncope. High altitude reduces brain and peripheral muscle tissue oxygenation. This study determined the effect of short-term altitude acclimatization on cerebral and peripheral leg tissue oxygenation index (TOI) post-orthostasis.

METHOD: Seven lowlanders completed a supine-to-stand maneuver at sea level (450 m) and for 3 consecutive days at high altitude (3776 m). Cardiorespiratory measurements and near-infrared spectroscopy-derived oxygenation of the frontal lobe (cerebral TOI) and vastus lateralis (leg TOI) were measured at supine and 5-min post-orthostasis.

RESULTS: After orthostasis at sea level, cerebral TOI decreased [mean Δ% (95% confidential interval): - 4.5%, (- 7.5, - 1.5), P < 0.001], whilst leg TOI was unchanged [- 4.6%, (- 10.9, 1.7), P = 0.42]. High altitude had no effect on cerebral TOI following orthostasis [days 1-3: - 2.3%, (- 5.3, 0.7); - 2.4%, (- 5.4, 0.6); - 2.1%, (- 5.1, 0.9), respectively, all P > 0.05], whereas leg TOI decreased [days 1-3: - 12.0%, (- 18.3, - 5.7); - 12.1%, (- 18.4, - 5.8); - 10.2%, (- 16.5, - 3.9), respectively, all P < 0.001]. This response did not differ with days spent at high altitude, despite evidence of cardiorespiratory acclimatization [increased peripheral oxygen saturation (supine: P = 0.01; stand: P = 0.02) and decreased end-tidal carbon dioxide (supine: P = 0.003; stand: P = 0.01)].

CONCLUSION: Cerebral oxygenation is preferentially maintained over leg oxygenation post-orthostasis at high altitude, suggesting different vascular regulation between cerebral and peripheral circulations. Short-term acclimatization to high altitude did not alter cerebral and leg oxygenation responses to orthostasis.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Altitude; Blood pressure; Heart rate; Hypoperfusion; Hypoxia; Tissue oxygenation

References

  1. Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32(11):2492–2500 - PubMed
  2. Brown CM, Hainsworth R (2000) Forearm vascular responses during orthostatic stress in control subjects and patients with posturally related syncope. Clin Auton Res: off J Clin Auton Res Soc 10(2):57–61 - PubMed
  3. Cheung SS, Mutanen NE, Karinen HM, Koponen AS, Kyrolainen H, Tikkanen HO, Peltonen JE (2014) Ventilatory chemosensitivity, cerebral and muscle oxygenation, and total hemoglobin mass before and after a 72 day mt. Everest expedition. High Alt Med Biol 15(3):331–340. https://doi.org/10.1089/ham.2013.1153 - PubMed
  4. Claydon VE, Hainsworth R (2004) Salt supplementation improves orthostatic cerebral and peripheral vascular control in patients with syncope. Hypertension 43(4):809–813. https://doi.org/10.1161/01.HYP.0000122269.05049.e7 - PubMed
  5. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. https://doi.org/10.3758/BRM.41.4.1149 - PubMed
  6. Firth PG, Zheng H, Windsor JS, Sutherland AI, Imray CH, Moore GW, Semple JL, Roach RC, Salisbury RA (2008) Mortality on Mount Everest, 1921–2006: descriptive study. BMJ 337:a2654. https://doi.org/10.1136/bmj.a2654 - PubMed
  7. Hansen J, Thomas GD, Harris SA, Parsons WJ, Victor RG (1996) Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Investig 98(2):584–596. https://doi.org/10.1172/JCI118826 - PubMed
  8. Hansen J, Sander M, Hald CF, Victor RG, Thomas GD (2000) Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J Physiol 527(Pt 2):387–396. https://doi.org/10.1111/j.1469-7793.2000.00387.x - PubMed
  9. Harms MP, Colier WN, Wieling W, Lenders JW, Secher NH, van Lieshout JJ (2000) Orthostatic tolerance, cerebral oxygenation, and blood velocity in humans with sympathetic failure. Stroke 31(7):1608–1614 - PubMed
  10. Horiuchi M, Endo J, Dobashi S, Kiuchi M, Koyama K, Subudhi AW (2016) Effect of progressive normobaric hypoxia on dynamic cerebral autoregulation. Exp Physiol 101(10):1276–1284. https://doi.org/10.1113/EP085789 - PubMed
  11. Horiuchi M, Oda S, Uno T, Endo J, Handa Y, Fukuoka Y (2017) Effects of short-term acclimatization at the summit of Mt. Fuji (3776 m) on sleep efficacy, cardiovascular responses, and ventilatory responses. High Alt Med Biol 18(2):171–178. https://doi.org/10.1089/ham.2016.0162 - PubMed
  12. Horiuchi M, Endo J, Handa-Kirihra Y (2020) Relationship between cerebral oxygenation and skin blood flow at the frontal lobe during progressive hypoxia: impact of acute hypotension. Adv Exp Med Biol 1232:69–75. https://doi.org/10.1007/978-3-030-34461-0_10 - PubMed
  13. Houtman S, Colier WN, Hopman MT, Oeseburg B (1999) Reproducibility of the alterations in circulation and cerebral oxygenation from supine rest to head-up tilt. Clin Physiol 19(2):169–177. https://doi.org/10.1046/j.1365-2281.1999.00159.x - PubMed
  14. Jensen JB, Wright AD, Lassen NA, Harvey TC, Winterborn MH, Raichle ME, Bradwell AR (1990) Cerebral blood flow in acute mountain sickness. J Appl Physiol 69(2):430–433. https://doi.org/10.1152/jappl.1990.69.2.430 - PubMed
  15. Kanstrup IL, Poulsen TD, Hansen JM, Andersen LJ, Bestle MH, Christensen NJ, Olsen NV (1999) Blood pressure and plasma catecholamines in acute and prolonged hypoxia: effects of local hypothermia. J Appl Physiol 87(6):2053–2058. https://doi.org/10.1152/jappl.1999.87.6.2053 - PubMed
  16. Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2007) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103(6):2049–2056. https://doi.org/10.1152/japplphysiol.00627.2007 - PubMed
  17. Kohyama T, Moriyama K, Kanai R, Kotani M, Uzawa K, Satoh T, Yorozu T (2015) Accuracy of pulse oximeters in detecting hypoxemia in patients with chronic thromboembolic pulmonary hypertension. PLoS ONE 10(5):e0126979. https://doi.org/10.1371/journal.pone.0126979 - PubMed
  18. Kuriyama K, Ueno T, Ballard RE, Cowings PS, Toscano WB, Watenpaugh DE, Hargens AR (2000) Cerebrovascular responses during lower body negative pressure-induced presyncope. Aviat Space Environ Med 71(10):1033–1038 - PubMed
  19. Lucas SJ, Burgess KR, Thomas KN, Donnelly J, Peebles KC, Lucas RA, Fan JL, Cotter JD, Basnyat R, Ainslie PN (2011) Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m. J Physiol 589(Pt 3):741–753. https://doi.org/10.1113/jphysiol.2010.192534 - PubMed
  20. Mehagnoul-Schipper DJ, Vloet LC, Colier WN, Hoefnagels WH, Jansen RW (2000) Cerebral oxygenation declines in healthy elderly subjects in response to assuming the upright position. Stroke 31(7):1615–1620 - PubMed
  21. Mehagnoul-Schipper DJ, Vloet LC, Colier WN, Hoefnagels WH, Verheugt FW, Jansen RW (2003) Cerebral oxygenation responses to standing in elderly patients with predominantly diastolic dysfunction. Clin Physiol Funct Imaging 23(2):92–97 - PubMed
  22. Nicholas R, O’Meara PD, Calonge N (1992) Is syncope related to moderate altitude exposure? JAMA 268(7):904–906 - PubMed
  23. Rasmussen P, Dawson EA, Nybo L, van Lieshout JJ, Secher NH, Gjedde A (2007) Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab: off J Int Soc Cereb Blood Flow Metab 27(5):1082–1093. https://doi.org/10.1038/sj.jcbfm.9600416 - PubMed
  24. Rosner MJ, Coley IB (1986) Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg 65(5):636–641. https://doi.org/10.3171/jns.1986.65.5.0636 - PubMed
  25. Rowell LB, Seals DR (1990) Sympathetic activity during graded central hypovolemia in hypoxemic humans. Am J Physiol 259(4 Pt 2):H1197-1206. https://doi.org/10.1152/ajpheart.1990.259.4.H1197 - PubMed
  26. Sanborn MR, Edsell ME, Kim MN, Mesquita R, Putt ME, Imray C, Yow H, Wilson MH, Yodh AG, Grocott M, Martin DS (2015) Cerebral hemodynamics at altitude: effects of hyperventilation and acclimatization on cerebral blood flow and oxygenation. Wilderness Environ Med 26(2):133–141. https://doi.org/10.1016/j.wem.2014.10.001 - PubMed
  27. Severinghaus JW, Chiodi H, Eger EI 2nd, Brandstater B, Hornbein TF (1966) Cerebral blood flow in man at high altitude. Role of cerebrospinal fluid pH in normalization of flow in chronic hypocapnia. Circ Res 19(2):274–282. https://doi.org/10.1161/01.res.19.2.274 - PubMed
  28. Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Roach RC (2014) AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Exp Physiol 99(5):772–781. https://doi.org/10.1113/expphysiol.2013.075184 - PubMed
  29. Thomas KN, Cotter JD, Galvin SD, Williams MJ, Willie CK, Ainslie PN (2009) Initial orthostatic hypotension is unrelated to orthostatic tolerance in healthy young subjects. J Appl Physiol 107(2):506–517. https://doi.org/10.1152/japplphysiol.91650.2008 - PubMed
  30. Thomas KN, Burgess KR, Basnyat R, Lucas SJ, Cotter JD, Fan JL, Peebles KC, Lucas RA, Ainslie PN (2010) Initial orthostatic hypotension at high altitude. High Alt Med Biol 11(2):163–167. https://doi.org/10.1089/ham.2009.1056 - PubMed
  31. van Lieshout JJ, Pott F, Madsen PL, van Goudoever J, Secher NH (2001) Muscle tensing during standing: effects on cerebral tissue oxygenation and cerebral artery blood velocity. Stroke 32(7):1546–1551 - PubMed
  32. Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH (2003) Syncope, cerebral perfusion, and oxygenation. J Appl Physiol 94(3):833–848. https://doi.org/10.1152/japplphysiol.00260.2002 - PubMed
  33. Vongpatanasin W, Wang Z, Arbique D, Arbique G, Adams-Huet B, Mitchell JH, Victor RG, Thomas GD (2011) Functional sympatholysis is impaired in hypertensive humans. J Physiol 589(Pt 5):1209–1220. https://doi.org/10.1113/jphysiol.2010.203026 - PubMed
  34. Westendorp RG, Blauw GJ, Frolich M, Simons R (1997) Hypoxic syncope. Aviat Space Environ Med 68(5):410–414 - PubMed
  35. Wieling W, Krediet CT, van Dijk N, Linzer M, Tschakovsky ME (2007) Initial orthostatic hypotension: review of a forgotten condition. Clin Sci 112(3):157–165. https://doi.org/10.1042/CS20060091 - PubMed
  36. Willie CK, Smith KJ, Day TA, Ray LA, Lewis NC, Bakker A, Macleod DB, Ainslie PN (2014) Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m. J Appl Physiol 116(7):905–910. https://doi.org/10.1152/japplphysiol.00594.2013 - PubMed

Publication Types

Grant support