Display options
Share it on

Nature. 2021 Aug;596(7870):68-73. doi: 10.1038/s41586-021-03683-0. Epub 2021 Aug 04.

Pseudogap in a crystalline insulator doped by disordered metals.

Nature

Sae Hee Ryu, Minjae Huh, Do Yun Park, Chris Jozwiak, Eli Rotenberg, Aaron Bostwick, Keun Su Kim

Affiliations

  1. Department of Physics, College of Science, Yonsei University, Seoul, Korea.
  2. Department of Physics, Pohang University of Science and Technology, Pohang, Korea.
  3. Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  4. Department of Physics, College of Science, Yonsei University, Seoul, Korea. [email protected].

PMID: 34349290 DOI: 10.1038/s41586-021-03683-0

Abstract

Key to our understanding of how electrons behave in crystalline solids is the band structure that connects the energy of electron waves to their wavenumber. Even in phases of matter with only short-range order (liquid or amorphous solid), the coherent part of electron waves still has a band structure. Theoretical models for the band structure of liquid metals were formulated more than five decades ago

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Edwards, S. F. The electronic structure of disordered systems. Phil. Mag. 6, 617–638 (1961). - PubMed
  2. Edwards, S. F. The electronic structure of liquid metals. Proc. R. Soc. Lond. A 267, 518–540 (1962). - PubMed
  3. Ziman, J. M. A theory of the electrical properties of liquid metals. I: The monovalent metals. Phil. Mag. 6, 1013–1034 (1961). - PubMed
  4. Ziman, J. M. The T matrix, the K matrix, d bands and l-dependent pseudo-potentials in the theory of metals. Proc. Phys. Soc. 86, 337–353 (1965). - PubMed
  5. Anderson, P. W. & McMillan, W. L. Multiple-scattering theory and resonances in transition metals. In Proc. International School of Physics “Enrico Fermi” Course 37 (ed. Marshall, W.) 50–86 (Academic, 1967). - PubMed
  6. Morgan, G. J. Electron transport in liquid metals II. A model for the wave functions in liquid transition metals. J. Phys. C 2, 1454–1464 (1969). - PubMed
  7. Gyorffy, B. L. Electronic states in liquid metals: a generalization of the coherent-potential approximation for a system with short-range order. Phys. Rev. B 1, 3290–3299 (1970). - PubMed
  8. Schwartz, L. & Ehrenreich, H. Single-site approximations in the electronic theory of liquid metals. Ann. Phys. 64, 100–148 (1971). - PubMed
  9. Faber, T. E. An Introduction to the Theory of Liquid Metals (Cambridge Univ. Press, 1972). - PubMed
  10. Olson, J. J. Anderson–McMillan prescription for the density of states of liquid iron. Phys. Rev. B 12, 2908–2916 (1975). - PubMed
  11. Chang, K. S., Sher, A., Petzinger, K. G. & Weisz, G. Density of states of liquid Cu. Phys. Rev. B 12, 5506–5513 (1975). - PubMed
  12. Oglesby, J. & Lloyd, P. Some single-site structure-independent approximations in condensed materials. J. Phys. C 9, 2879–2886 (1976). - PubMed
  13. Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968). - PubMed
  14. Mott, N. F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Phil. Mag. 19, 835–852 (1968). - PubMed
  15. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958). - PubMed
  16. Lu, D. et al. Angle-resolved photoemission studies of quantum materials. Annu. Rev. Condens. Matter Phys. 3, 129–167 (2012). - PubMed
  17. Graf, J. et al. Universal high energy anomaly in the angle-resolved photoemission spectra of high temperature superconductors: possible evidence of spinon and holon branches. Phys. Rev. Lett. 98, 067004 (2007). - PubMed
  18. Inosov, D. S. et al. Momentum and energy dependence of the anomalous high-energy dispersion in the electronic structure of high temperature superconductors. Phys. Rev. Lett. 99, 237002 (2007). - PubMed
  19. Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr - PubMed
  20. Uchida, M. et al. Pseudogap of metallic layered nickelate R - PubMed
  21. Baumberger, F., Auwärter, W., Greber, T. & Osterwalder, J. Electron coherence in a melting lead monolayer. Science 306, 2221–2224 (2004). - PubMed
  22. Kim, K. S. & Yeom, H. W. Radial band structure of electrons in liquid metals. Phys. Rev. Lett. 107, 136402 (2011). - PubMed
  23. Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015). - PubMed
  24. Baik, S. S., Kim, K. S., Yi, Y. & Choi, H. J. Emergence of two-dimensional massless Dirac fermions, chiral pseudospins, and Berry’s phase in potassium doped few-layer black phosphorus. Nano Lett. 15, 7788–7793 (2015). - PubMed
  25. Kiraly, B. et al. Anisotropic two-dimensional screening at the surface of black phosphorus. Phys. Rev. Lett. 123, 216403 (2019). - PubMed
  26. Tian, Z. et al. Isotropic charge screening of anisotropic black phosphorus revealed by potassium adatoms. Phys. Rev. B 100, 085440 (2019). - PubMed
  27. Negulyaev, N. N. et al. Melting of two-dimensional adatom superlattices stabilized by long-range electronic interactions. Phys. Rev. Lett. 102, 246102 (2009). - PubMed
  28. Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011). - PubMed
  29. Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Cambridge Univ. Press, 2017). - PubMed
  30. Meyer, A., Nestor, C. W. Jr & Young, W. H. Pseudo-atom phase shifts of liquid metals and alloys. Adv. Phys. 16, 581–590 (1967). - PubMed
  31. Kang, M. et al. Evolution of charge order topology across a magnetic phase transition in cuprate superconductors. Nat. Phys. 15, 335–340 (2019); correction 15, 721 (2019). - PubMed
  32. Voit, J. et al. Electronic structure of solids with competing periodic potentials. Science 290, 501–503 (2000). - PubMed
  33. Park, S. R. et al. Electronic structure of electron-doped Sm - PubMed
  34. Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007). - PubMed
  35. Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S. & Flower, N. E. General trends in oxygen stoichiometry effects on T - PubMed
  36. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007). - PubMed
  37. Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277–281 (2020). - PubMed
  38. March, N. H. Liquid Metals (Cambridge Univ. Press, 1990). - PubMed

Publication Types