Display options
Share it on

Front Plant Sci. 2021 Jul 06;12:699424. doi: 10.3389/fpls.2021.699424. eCollection 2021.

Introduction of the Carotenoid Biosynthesis α-Branch Into .

Frontiers in plant science

Martin Lehmann, Evgenia Vamvaka, Alejandro Torrado, Peter Jahns, Marcel Dann, Lea Rosenhammer, Amel Aziba, Dario Leister, Thilo Rühle

Affiliations

  1. Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.
  2. Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.

PMID: 34295345 PMCID: PMC8291087 DOI: 10.3389/fpls.2021.699424

Abstract

Lutein, made by the α-branch of the methyl-erythritol phosphate (MEP) pathway, is one of the most abundant xanthophylls in plants. It is involved in the structural stabilization of light-harvesting complexes, transfer of excitation energy to chlorophylls and photoprotection. In contrast, lutein and the α-branch of the MEP pathway are not present in cyanobacteria. In this study, we genetically engineered the cyanobacterium

Copyright © 2021 Lehmann, Vamvaka, Torrado, Jahns, Dann, Rosenhammer, Aziba, Leister and Rühle.

Keywords: Arabidopsis thaliana; Synechocystis; carotenoids; cyanobacteria; cyclase; genetic engineering; lutein

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Biol Chem. 1999 Oct 15;274(42):29613-23 - PubMed
  2. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1888-97 - PubMed
  3. Circulation. 2001 Jun 19;103(24):2922-7 - PubMed
  4. Protein Sci. 1999 May;8(5):978-84 - PubMed
  5. Adv Biochem Eng Biotechnol. 2016;153:37-58 - PubMed
  6. Arch Biochem Biophys. 2013 Jan 15;529(2):86-91 - PubMed
  7. Plant J. 2009 Aug;59(4):588-99 - PubMed
  8. Photosynth Res. 2008 Aug;97(2):121-40 - PubMed
  9. Plant Physiol. 2012 Sep;160(1):204-14 - PubMed
  10. Anal Bioanal Chem. 2012 Dec;404(10):3145-54 - PubMed
  11. Plant Biotechnol J. 2020 Mar;18(3):605-607 - PubMed
  12. Physiol Plant. 2019 May;166(1):403-412 - PubMed
  13. Biochim Biophys Acta. 2009 Jun;1787(6):753-72 - PubMed
  14. Biomed Res Int. 2015;2015:754934 - PubMed
  15. J Nat Prod. 2008 Sep;71(9):1647-50 - PubMed
  16. Plant Physiol. 1997 Dec;115(4):1609-1618 - PubMed
  17. J Biol Eng. 2009 Mar 20;3:4 - PubMed
  18. Bioresour Technol. 2015 May;184:421-428 - PubMed
  19. Life (Basel). 2015 Jan 21;5(1):269-93 - PubMed
  20. J Microbiol Methods. 2000 Aug;41(3):185-94 - PubMed
  21. Proc Nutr Soc. 1999 Aug;58(3):663-71 - PubMed
  22. J Gen Appl Microbiol. 2020 Jun 17;66(2):53-58 - PubMed
  23. Mar Drugs. 2014 Sep 17;12(9):4810-32 - PubMed
  24. Photosynth Res. 2017 Mar;131(3):267-280 - PubMed
  25. Prog Lipid Res. 2013 Oct;52(4):539-61 - PubMed
  26. Plant Cell Physiol. 2012 Nov;53(11):1881-8 - PubMed
  27. Mol Gen Genet. 1993 Apr;238(1-2):161-8 - PubMed
  28. Plant Cell Physiol. 2001 Jul;42(7):756-62 - PubMed
  29. JAMA. 1994 Nov 9;272(18):1413-20 - PubMed
  30. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2905-10 - PubMed
  31. Biochim Biophys Acta. 2012 Jan;1817(1):182-93 - PubMed
  32. Plant Cell. 1996 Sep;8(9):1613-26 - PubMed
  33. Methods Mol Biol. 2012;892:1-12 - PubMed
  34. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11784-9 - PubMed
  35. Plant Cell. 1994 Aug;6(8):1107-21 - PubMed
  36. Planta. 2019 Jan;249(1):145-154 - PubMed
  37. PLoS One. 2015 Jun 17;10(6):e0130904 - PubMed
  38. J Bacteriol. 2005 Oct;187(20):6883-92 - PubMed
  39. PLoS One. 2009;4(5):e5553 - PubMed
  40. Plant Cell Physiol. 2015 May;56(5):906-16 - PubMed
  41. Nature. 2004 Mar 18;428(6980):287-92 - PubMed
  42. Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730): - PubMed
  43. Plant J. 2015 May;82(4):582-95 - PubMed
  44. Mol Biotechnol. 2019 Sep;61(9):703-713 - PubMed
  45. Eur J Biochem. 1999 Jul;263(2):561-70 - PubMed
  46. Plant Cell Physiol. 2017 Apr 1;58(4):831-838 - PubMed
  47. FEBS Lett. 1997 Jan 6;400(3):271-4 - PubMed

Publication Types