Display options
Share it on

BMC Microbiol. 2021 Jul 28;21(1):221. doi: 10.1186/s12866-021-02284-1.

Comparison of three amplicon sequencing approaches to determine staphylococcal populations on human skin.

BMC microbiology

Charlotte Marie Ahle, Kristian Stødkilde-Jørgensen, Anja Poehlein, Wolfgang R Streit, Jennifer Hüpeden, Holger Brüggemann

Affiliations

  1. Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany.
  2. Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany.
  3. Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
  4. Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany.
  5. Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark. [email protected].

PMID: 34320945 PMCID: PMC8320028 DOI: 10.1186/s12866-021-02284-1

Abstract

BACKGROUND: Staphylococci are important members of the human skin microbiome. Many staphylococcal species and strains are commensals of the healthy skin microbiota, while few play essential roles in skin diseases such as atopic dermatitis. To study the involvement of staphylococci in health and disease, it is essential to determine staphylococcal populations in skin samples beyond the genus and species level. Culture-independent approaches such as amplicon next-generation sequencing (NGS) are time- and cost-effective options. However, their suitability depends on the power of resolution.

RESULTS: Here we compare three amplicon NGS schemes that rely on different targets within the genes tuf and rpsK, designated tuf1, tuf2 and rpsK schemes. The schemes were tested on mock communities and on human skin samples. To obtain skin samples and build mock communities, skin swab samples of healthy volunteers were taken. In total, 254 staphylococcal strains were isolated and identified to the species level by MALDI-TOF mass spectrometry. A subset of ten strains belonging to different staphylococcal species were genome-sequenced. Two mock communities with nine and eighteen strains, respectively, as well as eight randomly selected skin samples were analysed with the three amplicon NGS methods. Our results imply that all three methods are suitable for species-level determination of staphylococcal populations. However, the novel tuf2-NGS scheme was superior in resolution power. It unambiguously allowed identification of Staphylococcus saccharolyticus and distinguish phylogenetically distinct clusters of Staphylococcus epidermidis.

CONCLUSIONS: Powerful amplicon NGS approaches for the detection and relative quantification of staphylococci in human samples exist that can resolve populations to the species and, to some extent, to the subspecies level. Our study highlights strengths, weaknesses and pitfalls of three currently available amplicon NGS approaches to determine staphylococcal populations. Applied to the analysis of healthy and diseased skin, these approaches can be useful to attribute host-beneficial and -detrimental roles to skin-resident staphylococcal species and subspecies.

© 2021. The Author(s).

References

  1. Genome Biol Evol. 2015 Apr 16;7(5):1313-28 - PubMed
  2. Microbiome. 2016 Dec 2;4(1):63 - PubMed
  3. Appl Microbiol. 1975 Sep;30(3):381-5 - PubMed
  4. J Clin Microbiol. 1997 Dec;35(12):3116-21 - PubMed
  5. Sci Rep. 2019 Dec 27;9(1):19834 - PubMed
  6. Antimicrob Agents Chemother. 2012 Mar;56(3):1539-47 - PubMed
  7. Microorganisms. 2020 Jun 14;8(6): - PubMed
  8. Nat Med. 2009 Dec;15(12):1377-82 - PubMed
  9. Front Microbiol. 2019 Sep 27;10:2212 - PubMed
  10. J Clin Microbiol. 2002 Apr;40(4):1333-8 - PubMed
  11. J Clin Microbiol. 2000 Dec;38(12):4351-5 - PubMed
  12. Mol Microbiol. 1997 Dec;26(5):1005-11 - PubMed
  13. Nat Rev Microbiol. 2018 Mar;16(3):143-155 - PubMed
  14. Sci Rep. 2018 Aug 24;8(1):12751 - PubMed
  15. Science. 2009 May 29;324(5931):1190-2 - PubMed
  16. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  17. BMC Microbiol. 2020 Nov 26;20(1):362 - PubMed
  18. Front Cell Infect Microbiol. 2020 Oct 22;10:570261 - PubMed
  19. Bioinformatics. 2012 Oct 15;28(20):2678-9 - PubMed
  20. Nature. 2015 Apr 2;520(7545):104-8 - PubMed
  21. J Clin Microbiol. 2008 Mar;46(3):1019-25 - PubMed
  22. Nature. 2018 Jan 24;553(7689):427-436 - PubMed
  23. Nat Commun. 2018 Nov 28;9(1):5034 - PubMed
  24. Science. 2019 Jan 18;363(6424):227-228 - PubMed
  25. Microorganisms. 2020 Dec 12;8(12): - PubMed
  26. Microorganisms. 2020 Jul 23;8(8): - PubMed
  27. FEMS Microbiol Ecol. 2007 May;60(2):341-50 - PubMed
  28. J Cell Mol Med. 2019 Sep;23(9):5949-5955 - PubMed
  29. Genome Biol. 2014;15(11):524 - PubMed
  30. J Allergy Clin Immunol. 2000 Apr;105(4):814-9 - PubMed
  31. J Clin Microbiol. 1996 Apr;34(4):818-23 - PubMed
  32. J Invest Dermatol. 2016 May;136(5):947-956 - PubMed
  33. J Comput Biol. 2012 May;19(5):455-77 - PubMed
  34. Genome Biol. 2012 Jul 25;13(7):R64 - PubMed
  35. J Bacteriol. 2007 Mar;189(6):2540-52 - PubMed
  36. J Clin Microbiol. 2001 Oct;39(10):3693-5 - PubMed
  37. Immunity. 2015 Nov 17;43(5):1011-21 - PubMed
  38. Nature. 1988 May 19;333(6170):276-8 - PubMed
  39. J Clin Microbiol. 2001 Dec;39(12):4296-301 - PubMed
  40. J Invest Dermatol. 2020 Aug;140(8):1619-1628.e2 - PubMed
  41. Antimicrob Agents Chemother. 2020 May 21;64(6): - PubMed
  42. Nature. 1990 May 3;345(6270):63-5 - PubMed
  43. Trends Microbiol. 2019 Jun;27(6):497-507 - PubMed
  44. Cell. 2020 Feb 6;180(3):454-470.e18 - PubMed
  45. Sci Adv. 2018 Feb 28;4(2):eaao4502 - PubMed
  46. PLoS Pathog. 2021 Feb 5;17(2):e1009304 - PubMed
  47. J Clin Microbiol. 2010 Jan;48(1):192-201 - PubMed
  48. Sci Transl Med. 2017 Feb 22;9(378): - PubMed
  49. J Clin Microbiol. 2001 Jul;39(7):2541-7 - PubMed
  50. J Mol Diagn. 2010 Jan;12(1):109-17 - PubMed
  51. Nat Biotechnol. 2019 Aug;37(8):852-857 - PubMed
  52. Nature. 2014 Oct 2;514(7520):59-64 - PubMed
  53. Front Microbiol. 2019 Aug 27;10:1971 - PubMed

Publication Types