Display options
Share it on

Magn Reson Med. 2022 Jan;87(1):57-69. doi: 10.1002/mrm.28964. Epub 2021 Aug 11.

Remodeling after myocardial infarction and effects of heart failure treatment investigated by hyperpolarized [1-.

Magnetic resonance in medicine

Rasmus Stilling Tougaard, Christoffer Laustsen, Thomas Ravn Lassen, Haiyun Qi, Jakob Lykke Lindhardt, Marie Schroeder, Nichlas Riise Jespersen, Esben Søvsø Szocska Hansen, Steffen Ringgaard, Hans Erik Bøtker, Won Yong Kim, Hans Stødkilde-Jørgensen, Henrik Wiggers

Affiliations

  1. Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.
  2. MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.

PMID: 34378800 DOI: 10.1002/mrm.28964

Abstract

PURPOSE: Hyperpolarized [1-

METHODS: Thirty-five rats were scanned with hyperpolarized [1-

RESULTS: At 30 ± 0.5 days post MI, left ventricular ejection fraction (LVEF) differed between groups (sham, 77% ± 1%; placebo, 52% ± 3%; active, 63% ± 2%, P < .001). Cardiac metabolism, measured by both hyperpolarized [1-

CONCLUSION: In a rat model of moderate heart failure, medical treatment improved function, but did not on average influence [1-

© 2021 International Society for Magnetic Resonance in Medicine.

Keywords: MRS; animal models of human disease; heart failure; metabolism; myocardial infarction; remodeling

References

  1. Neubauer S. The failing heart-an engine out of fuel. N Engl J Med. 2007;356:1140-1151. - PubMed
  2. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093-1129. - PubMed
  3. Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation. 2004;110:894-896. - PubMed
  4. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207-258. - PubMed
  5. Schroeder MA, Lau AZ, Chen AP, et al. Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail. 2013;15:130-140. - PubMed
  6. Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15:1-9. - PubMed
  7. Obrzut S, Jamshidi N, Karimi A, Birgersdotter-Green U, Hoh C. Imaging and modeling of myocardial metabolism. J Cardiovasc Transl Res. 2010;3:384-396. - PubMed
  8. Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA. 2003;100:10158-10163. - PubMed
  9. Ball DR, Cruickshank R, Carr CA, et al. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate. NMR Biomed. 2013;26:1441-1450. - PubMed
  10. Merritt ME, Harrison C, Storey C, Sherry AD, Malloy CR. Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3-. Magn Reson Med. 2008;60:1029-1036. - PubMed
  11. Dodd MS, Atherton HJ, Carr CA, et al. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging. 2014;7:895-904. - PubMed
  12. Yoshihara HAI, Bastiaansen JAM, Berthonneche C, Comment A, Schwitter J. An intact small animal model of myocardial ischemia-reperfusion: characterization of metabolic changes by hyperpolarized 13C MR spectroscopy. Am J Physiol Heart Circ Physiol. 2015;309:H2058-H2066. - PubMed
  13. Oh-Ici D, Wespi P, Busch J, et al. Hyperpolarized metabolic MR imaging of acute myocardial changes and recovery after ischemia-reperfusion in a small-animal model. Radiology. 2016;278:742-751. - PubMed
  14. Lewis AJM, Miller JJ, Lau AZ, et al. Noninvasive immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ Res. 2018;122:1084-1093. - PubMed
  15. Golman K, Petersson JS, Magnusson P, et al. Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med. 2008;59:1005-1013. - PubMed
  16. Atherton HJ, Dodd MS, Heather LC, et al. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study. Circulation. 2011;123:2552-2561. - PubMed
  17. Dodd MS, Ball DR, Schroeder MA, et al. In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res. 2012;95:69-76. - PubMed
  18. Seymour A-ML, Giles L, Ball V, et al. In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res. 2015;106:249-260. - PubMed
  19. Charles CJ, Lee P, Li RR, et al. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail. 2020;7:92-102. - PubMed
  20. Schroeder MA, Cochlin LE, Heather LC, Clarke K, Radda GK, Tyler DJ. In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci USA. 2008;105:12051-12056. - PubMed
  21. Lewis AJM, Miller JJJ, McCallum C, et al. Assessment of metformin-induced changes in cardiac and hepatic redox state using hyperpolarized[1-13C]pyruvate. Diabetes. 2016;65:3544-3551. - PubMed
  22. Le Page LM, Ball DR, Ball V, et al. Simultaneous in vivo assessment of cardiac and hepatic metabolism in the diabetic rat using hyperpolarized MRS. NMR Biomed. 2016;29:1759-1767. - PubMed
  23. Abdurrachim D, Teo XQ, Woo CC, et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13 C magnetic resonance spectroscopy study. Diabetes Obes Metab. 2019;21:357-365. - PubMed
  24. Agger P, Hyldebrandt JA, Hansen ESS, et al. Magnetic resonance hyperpolarization imaging detects early myocardial dysfunction in a porcine model of right ventricular heart failure. Eur Heart J Cardiovasc Imaging. 2019;120:1-9. - PubMed
  25. Bøgh N, Hansen ESS, Omann C, et al. Increasing carbohydrate oxidation improves contractile reserves and prevents hypertrophy in porcine right heart failure. Sci Rep. 2020;10:8158. - PubMed
  26. Beanlands RS, Nahmias C, Gordon E, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation. 2000;102:2070-2075. - PubMed
  27. Wallhaus TR, Taylor M, Degrado TR, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation. 2001;103:2441-2446. - PubMed
  28. Al-Hesayen A, Azevedo ER, Floras JS, Hollingshead S, Lopaschuk GD, Parker JD. Selective versus nonselective beta-adrenergic receptor blockade in chronic heart failure: differential effects on myocardial energy substrate utilization. Eur J Heart Fail. 2005;7:618-623. - PubMed
  29. Sanbe A, Tanonaka K, Kobayasi R, Takeo S. Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol. 1995;27:2209-2222. - PubMed
  30. Hügel S, Horn M, de Groot M, et al. Effects of ACE inhibition and beta-receptor blockade on energy metabolism in rats postmyocardial infarction. Am J Physiol. 1999;277:H2167-H2175. - PubMed
  31. Cunningham CH, Lau JY, Chen AP, et al. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res. 2016;119:1177-1182. https://doi.org/10.1161/CIRCRESAHA.116.309769. - PubMed
  32. Rider OJ, Apps A, Miller JJJJ, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI. Circ Res. 2020;126:725-736. - PubMed
  33. Theres HP, Wagner KD, Romberg D, et al. Combined treatment with ramipril and metoprolol prevents changes in the creatine kinase isoenzyme system and improves hemodynamic function in rat hearts after myocardial infarction. Cardiovasc Drugs Ther. 2000;14:597-606. - PubMed
  34. Theres H, Wagner KD, Schulz S, et al. Oxygen radical system in chronic infarcted rat heart: the effect of combined beta blockade and ACE inhibition. J Cardiovasc Pharmacol. 2000;35:708-715. - PubMed
  35. Wagner K, Kamkin A, Kiseleva I, Theres H, Scholz H, Günther J. Effects of metoprolol and ramipril on action potentials after myocardial infarction in rats. Eur J Pharmacol. 2000;388:263-266. - PubMed
  36. Wagner KD, Theres H, Born A, et al. Contractile function of papillary muscle from rats with different infarct size after beta-adrenergic blockade and ACE-inhibition. J Mol Cell Cardiol. 1997;29:2941-2951. - PubMed
  37. Lassen TR, Nielsen JM, Johnsen J, Ringgaard S, Bøtker HE, Kristiansen SB. Effect of paroxetine on left ventricular remodeling in an in vivo rat model of myocardial infarction. Basic Res Cardiol. 2017;112:26. - PubMed
  38. Jespersen NR, Yokota T, Støttrup NB, et al. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia-reperfusion. J Physiol (Lond.). 2017;595:3765-3780. - PubMed
  39. Jespersen NR, Hjortbak MV, Lassen TR, et al. Cardioprotective effect of succinate dehydrogenase inhibition in rat hearts and human myocardium with and without diabetes mellitus. Sci Rep. 2020;10:10344. - PubMed
  40. Groennebaek T, Sieljacks P, Nielsen R, et al. Effect of blood flow restricted resistance exercise and remote ischemic conditioning on functional capacity and myocellular adaptations in patients with heart failure. Circulation: Heart Failure. 2019;12:e006427. - PubMed
  41. Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of segment-freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1. - PubMed
  42. Stuckey DJ, Carr CA, Tyler DJ, Clarke K. Cine-MRI versus two-dimensional echocardiography to measure in vivo left ventricular function in rat heart. NMR Biomed. 2008;21:765-772. - PubMed
  43. Laustsen C, Lipsø K, Ostergaard JA, et al. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney. Physiol Rep. 2014;2:e12233. - PubMed
  44. Tougaard RS, Hansen ESS, Laustsen C, et al. Acute hypertensive stress imaged by cardiac hyperpolarized [1-13C]pyruvate magnetic resonance. Magn Reson Med. 2018;80:2053-2061. - PubMed
  45. van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res. 2008;81:420-428. - PubMed
  46. Panchal AR, Stanley WC, Kerner J, Sabbah HN. Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail. 1998;4:121-126. - PubMed
  47. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J. 2004;25:634-641. - PubMed
  48. Mueller HS, Ayres SM. Metabolic response of the heart in acute myocardial infarction in man. Am J Cardiol. 1978;42:363-371. - PubMed
  49. Lopatin Y. Metabolic therapy in heart failure. Card Fail Rev. 2015;1:112-117. - PubMed
  50. Peuhkurinen KJ, Hiltunen JK, Hassinen IE. Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J. 1983;210:193-198. - PubMed
  51. Peuhkurinen KJ, Nuutinen EM, Pietiläinen EP, Hiltunen JK, Hassinen IE. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium. Biochem J. 1982;208:577-581. - PubMed
  52. Atherton HJ, Schroeder MA, Dodd MS, et al. Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS. NMR Biomed. 2011;24:201-208. - PubMed
  53. Lewandowski ED. Metabolic heterogeneity of carbon substrate utilization in mammalian heart: NMR determinations of mitochondrial versus cytosolic compartmentation. Biochemistry. 1992;31:8916-8923. - PubMed
  54. Wespi P, Steinhauser J, Kwiatkowski G, Kozerke S. Overestimation of cardiac lactate production caused by liver metabolism of hyperpolarized [1-13C]pyruvate. Magn Reson Med. 2018;80:1882-1890. - PubMed

Publication Types

Grant support