Display options
Share it on

mSphere. 2021 Aug 25;6(4):e0037621. doi: 10.1128/mSphere.00376-21. Epub 2021 Aug 11.

Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600.

mSphere

Anastasia Dimopoulou, Ioannis Theologidis, Dimitra Benaki, Marilena Koukounia, Amalia Zervakou, Aliki Tzima, George Diallinas, Dimitris G Hatzinikolaou, Nicholas Skandalis

Affiliations

  1. Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece.
  2. Laboratory of Pesticides' Toxicology, Benaki Phytopathological Institute, Athens, Greece.
  3. Department of Pharmacy, National and Kapodistrian University of Athensgrid.5216.0, Athens, Greece.
  4. Department of Biology, Sector of Botany, National and Kapodistrian University of Athensgrid.5216.0, Athens, Greece.
  5. Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece.
  6. Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

PMID: 34378986 PMCID: PMC8386435 DOI: 10.1128/mSphere.00376-21

Abstract

Bacillus amyloliquefaciens is considered the most successful biological control agent due to its ability to colonize the plant rhizosphere and phyllosphere where it outgrows plant pathogens by competition, antibiosis, and inducing plant defense. Its antimicrobial function is thought to depend on a diverse spectrum of secondary metabolites, including peptides, cyclic lipopeptides, and polyketides, which have been shown to target mostly fungal pathogens. In this study, we isolated and characterized the catecholate siderophore bacillibactin by

Keywords: Bacillus amyloliquefaciens; antibiotics; bactericides; iron starvation; plant pathogens; plant-pathogenic bacteria; siderophores

References

  1. Mol Microbiol. 2005 May;56(4):845-57 - PubMed
  2. J Microbiol. 2014 Aug;52(8):675-80 - PubMed
  3. Mol Microbiol. 2001 Nov;42(3):573-85 - PubMed
  4. Trends Biotechnol. 2010 Mar;28(3):142-9 - PubMed
  5. J Biotechnol. 2009 Mar 10;140(1-2):27-37 - PubMed
  6. Anal Biochem. 1987 Jan;160(1):47-56 - PubMed
  7. Trends Biotechnol. 2012 Mar;30(3):177-84 - PubMed
  8. Front Microbiol. 2016 Nov 22;7:1868 - PubMed
  9. Mol Microbiol. 2004 Apr;52(2):357-69 - PubMed
  10. Microorganisms. 2017 Nov 22;5(4): - PubMed
  11. Annu Rev Phytopathol. 2005;43:337-59 - PubMed
  12. PLoS One. 2015 Jul 15;10(7):e0132773 - PubMed
  13. Bioresour Technol. 2009 Jan;100(1):368-73 - PubMed
  14. J Mol Microbiol Biotechnol. 2009;16(1-2):14-24 - PubMed
  15. J Chem Ecol. 2013 Jul;39(7):869-78 - PubMed
  16. Pathogens. 2020 Dec 05;9(12): - PubMed
  17. Biotechnol Adv. 2010 May-Jun;28(3):367-74 - PubMed
  18. J Nat Prod. 2007 Sep;70(9):1417-23 - PubMed
  19. BMC Genomics. 2011 Feb 23;12:126 - PubMed
  20. J Bacteriol. 2006 Jun;188(11):4024-36 - PubMed
  21. J Biol Chem. 1995 Nov 10;270(45):26723-6 - PubMed
  22. Genomics. 2009 Aug;94(2):146-52 - PubMed
  23. Microbiology (Reading). 2009 Jan;155(Pt 1):1-8 - PubMed
  24. Front Microbiol. 2015 Dec 10;6:1395 - PubMed
  25. J Appl Microbiol. 2019 Jan;126(1):165-176 - PubMed
  26. Plant Cell Physiol. 2013 Aug;54(8):1403-14 - PubMed
  27. Mar Drugs. 2018 Jan 10;16(1): - PubMed
  28. J Antimicrob Chemother. 2019 Sep 1;74(9):2631-2639 - PubMed
  29. Microbiol Res. 2016 Mar;184:25-31 - PubMed
  30. Appl Environ Microbiol. 2010 Mar;76(5):1349-58 - PubMed
  31. Mol Microbiol. 2007 Jul;65(2):554-68 - PubMed
  32. Sci Rep. 2018 Jul 9;8(1):10320 - PubMed
  33. J Biol Inorg Chem. 2006 Nov;11(8):1087-97 - PubMed
  34. Mol Microbiol. 2000 Jul;37(1):1-12 - PubMed
  35. Indian J Exp Biol. 2006 Apr;44(4):340-4 - PubMed
  36. Mol Microbiol. 2007 Oct;66(2):395-409 - PubMed
  37. J Bacteriol. 2005 Aug;187(15):5356-66 - PubMed
  38. Mol Plant Microbe Interact. 2015 Sep;28(9):984-95 - PubMed
  39. Appl Microbiol Biotechnol. 1999 May;51(5):553-63 - PubMed
  40. Adv Drug Deliv Rev. 2013 Oct;65(10):1299-315 - PubMed
  41. Sci Rep. 2018 Mar 12;8(1):4360 - PubMed
  42. Appl Environ Microbiol. 2019 Jan 23;85(3): - PubMed
  43. Nanomaterials (Basel). 2017 Jul 10;7(7): - PubMed
  44. Methods Enzymol. 1994;235:329-44 - PubMed
  45. Adv Genet. 1953;5:141-238 - PubMed
  46. Sci Rep. 2019 Dec 13;9(1):19120 - PubMed
  47. J Bacteriol. 2004 Feb;186(4):1084-96 - PubMed
  48. Sensors (Basel). 2010;10(2):1326-37 - PubMed
  49. Appl Environ Microbiol. 2017 Sep 15;83(19): - PubMed
  50. Mol Plant Pathol. 2013 May;14(4):429-38 - PubMed
  51. Front Microbiol. 2016 Jun 07;7:888 - PubMed
  52. Appl Microbiol Biotechnol. 2017 Aug;101(15):5951-5960 - PubMed
  53. J Res Med Sci. 2014 Feb;19(2):164-74 - PubMed
  54. Arch Microbiol. 2021 Apr;203(3):1195-1209 - PubMed
  55. Biophys J. 2001 Sep;81(3):1547-54 - PubMed
  56. J Bacteriol. 2008 Aug;190(15):5143-52 - PubMed
  57. Plant Dis. 2016 Jul;100(7):1321-1330 - PubMed
  58. Front Microbiol. 2015 Jul 28;6:780 - PubMed
  59. Mol Genet Genomics. 2004 Nov;272(4):363-78 - PubMed
  60. Proc Biol Sci. 2014 Jul 22;281(1787): - PubMed
  61. Mol Microbiol. 2002 Sep;45(6):1613-29 - PubMed
  62. Biochim Biophys Acta. 2009 Jul;1790(7):600-5 - PubMed
  63. Genet Mol Biol. 2012 Dec;35(4 (suppl)):1044-51 - PubMed
  64. J Bacteriol. 1996 Feb;178(3):854-61 - PubMed
  65. J Biotechnol. 2009 Mar 10;140(1-2):38-44 - PubMed

Publication Types