Display options
Share it on

Mol Ecol Resour. 2021 Aug 05; doi: 10.1111/1755-0998.13483. Epub 2021 Aug 05.

A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush).

Molecular ecology resources

Seth R Smith, Eric Normandeau, Haig Djambazian, Pubudu M Nawarathna, Pierre Berube, Andrew M Muir, Jiannis Ragoussis, Chantelle M Penney, Kim T Scribner, Gordon Luikart, Chris C Wilson, Louis Bernatchez

Affiliations

  1. Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
  2. Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
  3. Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.
  4. McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada.
  5. Department of Human Genetics, Canadian Centre for Computational Genomics (C3G, McGill University, Montréal, QC, Canada.
  6. Great Lakes Fishery Commission, Ann Arbor, MI, USA.
  7. Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
  8. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
  9. Fish and Wildlife Genomics Group, University of Montana, Missoula, MT, USA.
  10. Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA.
  11. Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada.

PMID: 34351050 DOI: 10.1111/1755-0998.13483

Abstract

Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) - a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.

© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

Keywords: Salvelinus ; Lake Trout; genome assembly; genomics; salmonid

References

  1. Allendorf, F. W., & Danzmann, R. G. (1997). Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics, 145(4), 1083-1092. - PubMed
  2. Allendorf, F. W., & Thorgaard, G. H. (1984). Tetraploidy and the evolution of salmonid fishes. In B. Turner (Ed.), Evolutionary genetics of fishes (pp. 1-53). Springer. - PubMed
  3. Balon, E. K. (1980). Charrs, salmonid fishes of the genus Salvelinus. Kluwer. - PubMed
  4. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021 - PubMed
  5. Benaglia, T., Chauveau, D., Hunter, D. R., & Young, D. (2009). mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6), 1-29. - PubMed
  6. Berthelot, C., Brunet, F., Chalopin, D., Juanchich, A., Bernard, M., Noël, B., Bento, P., Da Silva, C., Labadie, K., Alberti, A., Aury, J.-M., Louis, A., Dehais, P., Bardou, P., Montfort, J., Klopp, C., Cabau, C., Gaspin, C., Thorgaard, G. H., … Guiguen, Y. (2014). The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nature Communications, 5(1), 1-10. https://doi.org/10.1038/ncomms4657 - PubMed
  7. Bertolotti, A. C., Layer, R. M., Gundappa, M. K., Gallagher, M. D., Pehlivanoglu, E., Nome, T., Robledo, D., Kent, M. P., Røsaeg, L. L., Holen, M. M., Mulugeta, T. D., Ashton, T. J., Hindar, K., Saegrov, H., Florø-Larsen, B., Erkinaro, J., Primmer, C. R., Bernatchez, L., Martin, S. A. M., … Macqueen, D. J. (2020). The structural variation landscape in 492 Atlantic salmon genomes. Nature Communications, 11(1), 1-16. https://doi.org/10.1038/s41467-020-18972-x - PubMed
  8. Blackie, C. T., Weese, D. J., & Noakes, D. L. G. (2003). Evidence for resource polymorphism in the lake charr (Salvelinus namaycush) population of Great Bear Lake, Northwest Territories. Canada. Ecoscience, 10(4), 509-514. - PubMed
  9. Bourgey, M., Dali, R., Eveleigh, R., Chen, K. C., Letourneau, L., Fillon, J., Michaud, M., Caron, M., Sandoval, J., Lefebvre, F., Leveque, G., Mercier, E., Bujold, D., Marquis, P., Van, P. T., Anderson de Lima Morais, D., Tremblay, J., Shao, X., Henrion, E., … Bourque, G. (2019). GenPipes: An open-source framework for distributed and scalable genomic analyses. GigaScience, 8(6), giz037. https://doi.org/10.1093/gigascience/giz037 - PubMed
  10. Catchen, J., Amores, A., & Bassham, S. (2020). Chromonomer: a tool set for repairing and enhancing assembled genomes through integration of genetic maps and conserved synteny. G3: Genes, Genomes, Genetics, 10(11), 4115-4128. - PubMed
  11. Chaisson, M. J., & Tesler, G. (2012). Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory. BMC Bioinformatics, 13(1), 1-18. https://doi.org/10.1186/1471-2105-13-238 - PubMed
  12. Chavarie, L., Howland, K., Harris, L., & Tonn, W. (2015). Polymorphism in Lake Trout in Great Bear Lake: intra-lake morphological diversification at two spatial scales. Biological Journal of the Linnean Society, 114(1), 109-125. https://doi.org/10.1111/bij.12398 - PubMed
  13. Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., Turner, S. W., & Korlach, J. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6), 563. https://doi.org/10.1038/nmeth.2474 - PubMed
  14. Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., Dunn, C., O'Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., Cramer, G. R., Delledonne, M., Luo, C., Ecker, J. R., Cantu, D., Rank, D. R., & Schatz, M. C. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13(12), 1050-1054. https://doi.org/10.1038/nmeth.4035 - PubMed
  15. Chomczynski, P., & Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols, 1(2), 581-585. https://doi.org/10.1038/nprot.2006.83 - PubMed
  16. Christensen, K. A., Leong, J. S., Sakhrani, D., Biagi, C. A., Minkley, D. R., Withler, R. E., Rondeau, E. B., Koop, B. F., & Devlin, R. H. (2018). Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLoS One, 13(4), e0195461. https://doi.org/10.1371/journal.pone.0195461 - PubMed
  17. Christensen, K. A., Rondeau, E. B., Minkley, D. R., Leong, J. S., Nugent, C. M., Danzmann, R. G., Ferguson, M. M., Stadnik, A., Devlin, R. H., Muzzerall, R., Edwards, M., Davidson, W. S., & Koop, B. F. (2018). The Arctic Char (Salvelinus alpinus) genome and transcriptome assembly. PLoS One, 13(9), e0204076. - PubMed
  18. Christensen, K. A., Rondeau, E. B., Minkley, D. R., Leong, J. S., Nugent, C. M., Danzmann, R. G., Ferguson, M. M., Stadnik, A., Devlin, R. H., Muzzerall, R., Edwards, M., Davidson, W. S., & Koop, B. F. (2021). Retraction: The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS One, 16(2), e0247083. - PubMed
  19. De-Kayne, R., Zoller, S., & Feulner, P. G. (2020). A de novo chromosome-level genome assembly of Coregonus sp. “Balchen”: One representative of the Swiss Alpine whitefish radiation. Molecular Ecology Resources, 20(4), 1093-1109. - PubMed
  20. Döring, A., Weese, D., Rausch, T., & Reinert, K. (2008). SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics, 9(1), 1-9. https://doi.org/10.1186/1471-2105-9-11 - PubMed
  21. Du, K., Stöck, M., Kneitz, S., Klopp, C., Woltering, J. M., Adolfi, M. C., Feron, R., Prokopov, D., Makunin, A., Kichigin, I., Schmidt, C., Fischer, P., Kuhl, H., Wuertz, S., Gessner, J., Kloas, W., Cabau, C., Iampietro, C., Parrinello, H., … Schartl, M. (2020). The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology & Evolution, 4(6), 841-852. https://doi.org/10.1038/s41559-020-1166-x - PubMed
  22. English, A. C., Richards, S., Han, Y. I., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D. M., Reid, J. G., Worley, K. C., & Gibbs, R. A. (2012). Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One, 7(11), e47768. https://doi.org/10.1371/journal.pone.0047768 - PubMed
  23. Fitzsimons, J. D., Brown, S. B., Williston, B., Williston, G., Brown, L. R., Moore, K., Honeyfield, D. C., & Tillitt, D. E. (2009). Influence of thiamine deficiency on Lake Trout larval growth, foraging, and predator avoidance. Journal of Aquatic Animal Health, 21(4), 302-314. https://doi.org/10.1577/H08-019.1 - PubMed
  24. Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9451-9457. https://doi.org/10.1073/pnas.1921046117 - PubMed
  25. Gagnaire, P. A., Normandeau, E., Pavey, S. A., & Bernatchez, L. (2013). Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis). Molecular Ecology, 22(11), 3036-3048. - PubMed
  26. Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. arXiv. preprint arXiv:1207.3907. - PubMed
  27. Ghurye, J., Pop, M., Koren, S., Bickhart, D., & Chin, C. S. (2017). Scaffolding of long read assemblies using long range contact information. BMC Genomics, 18(1), 1-11. https://doi.org/10.1186/s12864-017-3879-z - PubMed
  28. Gillard, G. B., Grønvold, L., Røsaeg, L. L., Holen, M. M., Monsen, Ø., Koop, B. F., Rondeau, E. B., Gundappa, M. K., Mendoza, J., Macqueen, D. J., Rohlfs, R. V., Sandve, S. R., & Hvidsten, T. R. (2021). Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biology, 22(1), 1-18. https://doi.org/10.1186/s13059-021-02323-0 - PubMed
  29. Goetz, F., Rosauer, D., Sitar, S., Goetz, G., Simchick, C., Roberts, S., & Mackenzie, S. (2010). A genetic basis for the phenotypic differentiation between siscowet and lean Lake Trout (Salvelinus namaycush). Molecular Ecology, 19, 176-196. - PubMed
  30. Goetz, F., Smith, S. E., Goetz, G., & Murphy, C. A. (2016). Sea lampreys elicit strong transcriptomic responses in the Lake Trout liver during parasitism. BMC Genomics, 17(1), 1-16. https://doi.org/10.1186/s12864-016-2959-9 - PubMed
  31. Goodier, J. L. (1981). Native Lake Trout (Salvelinus namaycush) stocks in the Canadian waters of Lake Superior prior to 1955. Canadian Journal of Fisheries and Aquatic Sciences, 38(12), 1724-1737. - PubMed
  32. Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811-2812. https://doi.org/10.1093/bioinformatics/btu393 - PubMed
  33. Gundappa, M. K., To, T., Grønvold, L., Martin, S., Lien, S., Geist, J., Hazlerigg, D., Sandve, S., & Macqueen, D. (2021). Genome-wide reconstruction of rediploidization following autopolyploidization across one hundred million years of salmonid evolution. bioRxiv. - PubMed
  34. Haas, B. J., Delcher, A. L., Wortman, J. R., & Salzberg, S. L. (2004). DAGchainer: A tool for mining segmental genome duplications and synteny. Bioinformatics, 20(18), 3643-3646. https://doi.org/10.1093/bioinformatics/bth397 - PubMed
  35. Hansen, M. J. (1999). Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration. In W. W. Taylor & C. P. Ferreri (Eds.), Great lakes fishery policy and management: A binational perspective (pp. 417-453). Michigan State University Press. - PubMed
  36. Hansen, M. J., Nate, N. A., Muir, A. M., Bronte, C. R., Zimmerman, M. S., & Krueger, C. C. (2016). Life history variation among four Lake Trout morphs at Isle Royale, Lake Superior. Journal of Great Lakes Research, 42(2), 421-432. https://doi.org/10.1016/j.jglr.2015.12.011 - PubMed
  37. Hansen, T. J., Penman, D., Glover, K. A., Fraser, T. W. K., Vågseth, T., Thorsen, A., & Fjelldal, P. G. (2020). Production and verification of the first Atlantic salmon (Salmo salar L.) clonal lines. BMC Genetics, 21(1), 1-10. - PubMed
  38. Hanson, S. D., Holey, M. E., Treska, T. J., Bronte, C. R., & Eggebraaten, T. H. (2013). Evidence of wild juvenile Lake Trout recruitment in western Lake Michigan. North American Journal of Fisheries Management, 33(1), 186-191. https://doi.org/10.1080/02755947.2012.754804 - PubMed
  39. Harris, L. N., Chavarie, L., Bajno, R., Howland, K. L., Wiley, S. H., Tonn, W. M., & Taylor, E. B. (2015). Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada’s Great Bear Lake. Heredity, 114(1), 94-106. https://doi.org/10.1038/hdy.2014.74 - PubMed
  40. Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E., & Lyons, E. (2017). SynMap2 and SynMap3D: Web-based whole-genome synteny browsers. Bioinformatics, 33(14), 2197-2198. https://doi.org/10.1093/bioinformatics/btx144 - PubMed
  41. Hotaling, S., & Kelley, J. L. (2020). The rising tide of high-quality genomic resources. Molecular Ecology Resources, 19, 567-569. https://doi.org/10.1111/1755-0998.12964 - PubMed
  42. Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., Yabana, M., Harada, M., Nagayasu, E., Maruyama, H., Kohara, Y., Fujiyama, A., Hayashi, T., & Itoh, T. (2014). Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Research, 24(8), 1384-1395. https://doi.org/10.1101/gr.170720.113 - PubMed
  43. Kodama, M., Brieuc, M. S., Devlin, R. H., Hard, J. J., & Naish, K. A. (2014). Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event. G3: Genes, Genomes, Genetics, 4(9), 1717-1730. - PubMed
  44. Komen, H., & Thorgaard, G. H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: A review. Aquaculture, 269(1-4), 150-173. https://doi.org/10.1016/j.aquaculture.2007.05.009 - PubMed
  45. Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27(5), 722-736. - PubMed
  46. Krueger, C. C., Horrall, R. M., & Gruenthal, H. (1983). Strategy for the use of Lake Trout strains in Lake Michigan. Wisconsin Department of Natural Resources, Administrative Report, 17. - PubMed
  47. Krueger, C. C., & Ihssen, P. E. (1995). Review of genetics of Lake Trout in the Great Lakes: History, molecular genetics, physiology, strain comparisons, and restoration management. Journal of Great Lakes Research, 21, 348-363. https://doi.org/10.1016/S0380-1330(95)71109-1 - PubMed
  48. Lantry, J. R. (2015). Eastern basin of Lake Ontario warmwater fisheries assessment, 1976-2014. In 2014 annual report, Bureau of Fisheries, Lake Ontario Unit and St Lawrence River Unit to the Great Lakes Fishery Commission’s Lake Ontario Committee (pp. 1-35). - PubMed
  49. Larson, W., Kornis, M., Turnquist, K. N., Bronte, C., Holey, M. E., Hanson, D., Treska, T., Stott, W., & Sloss, B. (2021). The genetic composition of wild recruits in a recovering Lake Trout population in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 99(999), 1-15. - PubMed
  50. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. - PubMed
  51. Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191 - PubMed
  52. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352 - PubMed
  53. Lien, S., Koop, B., Sandve, S., Miller, J. R., Kent, M., Nome, T., Hvidsten, T. R., Leong, J., Minkley, D., Zimin, A., Grammes, F., Grove, H., Gjuvsland, A., Walenz, B., Hermansen, R. A., Schalburg, K. V., Rondeau, E., Génova, A., Samy, J. K., … Davidson, W. (2016). The Atlantic salmon genome provides insights into rediploidization. Nature, 533(7602), 200-205. - PubMed
  54. Limborg, M. T., Seeb, L. W., & Seeb, J. E. (2016). Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing. Molecular Ecology, 25(10), 2117-2129. https://doi.org/10.1111/mec.13601 - PubMed
  55. Lynch, M., & Force, A. G. (2000). The origin of interspecific genomic incompatibility via gene duplication. The American Naturalist, 156(6), 590-605. https://doi.org/10.1086/316992 - PubMed
  56. Mac, M. J., & Edsall, C. C. (1991). Environmental contaminants and the reproductive success of Lake Trout in the Great Lakes: An epidemiological approach. Journal of Toxicology and Environmental Health, Part A Current Issues, 33(4), 375-394. https://doi.org/10.1080/15287399109531536 - PubMed
  57. Macqueen, D. J., & Johnston, I. A. (2014). A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B: Biological Sciences, 281(1778), 20132881. https://doi.org/10.1098/rspb.2013.2881 - PubMed
  58. Macqueen, D. J., Primmer, C. R., Houston, R. D., Nowak, B. F., Bernatchez, L., Bergseth, S., Davidson, W. S., Gallardo-Escárate, C., Goldammer, T., Guiguen, Y., Iturra, P., Kijas, J. W., Koop, B. F., Lien, S., Maass, A., Martin, S. A. M., McGinnity, P., Montecino, M., Naish, K. A., … Yáñez, J. M. (2017). Functional Annotation of All Salmonid Genomes (FAASG): An international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics, 18(1), 1-9. - PubMed
  59. Madenjian, C. P., O'Gorman, R., Bunnell, D. B., Argyle, R. L., Roseman, E. F., Warner, D. M., Stockwell, J. D., & Stapanian, M. A. (2008). Adverse effects of alewives on Laurentian Great Lakes fish communities. North American Journal of Fisheries Management, 28(1), 263-282. https://doi.org/10.1577/M07-012.1 - PubMed
  60. Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLoS Computational Biology, 14(1), e1005944. https://doi.org/10.1371/journal.pcbi.1005944 - PubMed
  61. Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764-770. https://doi.org/10.1093/bioinformatics/btr011 - PubMed
  62. Marin, K., Coon, A., Carson, R., Debes, P. V., & Fraser, D. J. (2016). Striking phenotypic variation yet low genetic differentiation in sympatric Lake Trout (Salvelinus namaycush). PLoS One, 11(9), e0162325. https://doi.org/10.1371/journal.pone.0162325 - PubMed
  63. Marsden, J. E., Noakes, D. L., & Krueger, C. C. (2021). Terminology Issues in Lake Charr Early Development. In A. M. Muir (Ed.), The Lake Charr Salvelinus namaycush: Biology, ecology, distribution, and management (pp. 487-497). Springer International Publishing. - PubMed
  64. Mérot, C., Oomen, R. A., Tigano, A., & Wellenreuther, M. (2020). A roadmap for understanding the evolutionary significance of structural genomic variation. Trends in Ecology & Evolution, 35(7), 561-572. https://doi.org/10.1016/j.tree.2020.03.002 - PubMed
  65. Muir, A. M., Bronte, C. R., Zimmerman, M. S., Quinlan, H. R., Glase, J. D., & Krueger, C. C. (2014). Ecomorphological diversity of Lake Trout at Isle Royale, Lake Superior. Transactions of the American Fisheries Society, 143(4), 972-987. https://doi.org/10.1080/00028487.2014.900823 - PubMed
  66. Muir, A. M., Hansen, M. J., Bronte, C. R., & Krueger, C. C. (2016). If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish and Fisheries, 17(4), 1194-1207. - PubMed
  67. Ohno, S. (1970). Evolution by gene duplication. Springer-Verlag. - PubMed
  68. Page, K. S., Scribner, K. T., Bennett, K. R., Garzel, L. M., & Burnham-Curtis, M. K. (2003). Genetic assessment of strain-specific sources of Lake Trout recruitment in the Great Lakes. Transactions of the American Fisheries Society, 132(5), 877-894. https://doi.org/10.1577/T02-092 - PubMed
  69. Pan, W., Jiang, T., & Lonardi, S. (2020). OMGS: Optical map-based genome scaffolding. Journal of Computational Biology, 27(4), 519-533. https://doi.org/10.1089/cmb.2019.0310 - PubMed
  70. Pearse, D. E., Barson, N. J., Nome, T., Gao, G., Campbell, M. A., Abadía-Cardoso, A., Anderson, E. C., Rundio, D. E., Williams, T. H., Naish, K. A., Moen, T., Liu, S., Kent, M., Moser, M., Minkley, D. R., Rondeau, E. B., Brieuc, M. S. O., Sandve, S. R., Miller, M. R., … Lien, S. (2019). Sex-dependent dominance maintains migration supergene in rainbow trout. Nature Ecology & Evolution, 3(12), 1731-1742. https://doi.org/10.1038/s41559-019-1044-6 - PubMed
  71. Perkins, D. L., Fitzsimons, J. D., Marsden, J. E., Krueger, C. C., & May, B. (1995). Differences in reproduction among hatchery strains of Lake Trout at eight spawning areas in Lake Ontario: Genetic evidence from mixed-stock analysis. Journal of Great Lakes Research, 21, 364-374. https://doi.org/10.1016/S0380-1330(95)71110-8 - PubMed
  72. Pflug, J. M., Holmes, V. R., Burrus, C., Johnston, J. S., & Maddison, D. R. (2020). Measuring genome sizes using read-depth, k-mers, and flow cytometry: Methodological comparisons in beetles (Coleoptera). G3: Genes, Genomes, Genetics, 10(9), 3047-3060. - PubMed
  73. Prince, D. J., O’Rourke, S. M., Thompson, T. Q., Ali, O. A., Lyman, H. S., Saglam, I. K., Hotaling, T. J., Spidle, A. P., & Miller, M. R. (2017). The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Science Advances, 3(8), e1603198. https://doi.org/10.1126/sciadv.1603198 - PubMed
  74. Pycha, R. L. (1980). Changes in mortality of Lake Trout (Salvelinus namaycush) in Michigan waters of Lake Superior in relation to sea lamprey (Petromyzon marinus) predation, 1968-78. Canadian Journal of Fisheries and Aquatic Sciences, 37(11), 2063-2073. - PubMed
  75. Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. https://doi.org/10.1093/bioinformatics/btq033 - PubMed
  76. R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ - PubMed
  77. Rezvoy, C., Charif, D., Guéguen, L., & Marais, G. A. (2007). MareyMap: An R-based tool with graphical interface for estimating recombination rates. Bioinformatics, 23(16), 2188-2189. https://doi.org/10.1093/bioinformatics/btm315 - PubMed
  78. Riley, S. C., He, J. X., Johnson, J. E., O’Brien, T. P., & Schaeffer, J. S. (2007). Evidence of widespread natural reproduction by Lake Trout i in the Michigan waters of Lake Huron. Journal of Great Lakes Research, 33(4), 917-921. https://doi.org/10.3394/0380-1330(2007)33[917:EOWNRB]2.0.CO;2 - PubMed
  79. Robertson, F. M., Gundappa, M. K., Grammes, F., Hvidsten, T. R., Redmond, A. K., Lien, S., Martin, S. A. M., Holland, P. W. H., Sandve, S. R., & Macqueen, D. J. (2017). Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biology, 18(1), 1-14. https://doi.org/10.1186/s13059-017-1241-z - PubMed
  80. Rondeau, E. B., Minkley, D. R., Leong, J. S., Messmer, A. M., Jantzen, J. R., von Schalburg, K. R., Lemon, C., Bird, N. H., & Koop, B. F. (2014). The genome and linkage map of the northern pike (Esox lucius): Conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One, 9(7), e102089. https://doi.org/10.1371/journal.pone.0102089 - PubMed
  81. Rougeux, C., Gagnaire, P. A., Praebel, K., Seehausen, O., & Bernatchez, L. (2019). Polygenic selection drives the evolution of convergent transcriptomic landscapes across continents within a Nearctic sister species complex. Molecular Ecology, 28(19), 4388-4403. https://doi.org/10.1111/mec.15226 - PubMed
  82. Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17(2), 155-158. https://doi.org/10.1038/s41592-019-0669-3 - PubMed
  83. Salzberg, S. L. (2019). Next-generation genome annotation: we still struggle to get it right. Genome Biology, 20, 92. https://doi.org/10.1186/s13059-019-1715-2. - PubMed
  84. Sambrook, J., & Russell, D. W. (2001). Molecular cloning -Vol. 1, 2, 3. Cold Springs Harbour Laboratory Press. - PubMed
  85. Schroeter, J. C., Maloy, A. P., Rees, C. B., & Bartron, M. L. (2020). Fish mitochondrial genome sequencing: expanding genetic resources to support species detection and biodiversity monitoring using environmental DNA. Conservation Genetics Resources, 12(3), 433-446. https://doi.org/10.1007/s12686-019-01111-0 - PubMed
  86. Scribner, K., Tsehaye, I., Brenden, T., Stott, W., Kanefsky, J., & Bence, J. (2018). Hatchery strain contributions to emerging wild Lake Trout populations in Lake Huron. Journal of Heredity, 109(6), 675-688. https://doi.org/10.1093/jhered/esy029 - PubMed
  87. Shedko, S. V. (2019). Assembly ASM291031v2 (Genbank: GCA_002910315. 2) identified as assembly of the Northern Dolly Varden (Salvelinus malma malma) genome, and not the Arctic char (S. alpinus) genome. arXiv preprint arXiv:1912.02474. - PubMed
  88. Siberchicot, A., Bessy, A., Guéguen, L., & Marais, G. A. (2017). MareyMap online: A user-friendly web application and database service for estimating recombination rates using physical and genetic maps. Genome Biology and Evolution, 9(10), 2506-2509. https://doi.org/10.1093/gbe/evx178 - PubMed
  89. Smit, A. F. A., Hubley, R., & Green, P. (2015). RepeatMasker Open-4.0. http://www.repeatmasker.org - PubMed
  90. Smith, S. H. (1968). Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada, 25, 667-693. - PubMed
  91. Smith, S. R., Amish, S. J., Bernatchez, L., Le Luyer, J., Wilson, C., Boeberitz, O., Luikart, G., & Scribner, K. T. (2020). Mapping of adaptive traits enabled by a high-density linkage map for Lake Trout. G3: Genes, Genomes, Genetics, 10(6), 1929-1947. https://doi.org/10.1534/g3.120.401184 - PubMed
  92. Soderlund, C., Bomhoff, M., & Nelson, W. M. (2011). SyMAP v3. 4: A turnkey synteny system with application to plant genomes. Nucleic Acids Research, 39(10), e68. - PubMed
  93. Soderlund, C., Nelson, W., Shoemaker, A., & Paterson, A. (2006). SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Research, 16(9), 1159-1168. https://doi.org/10.1101/gr.5396706 - PubMed
  94. Tang, H., Lyons, E., Pedersen, B., Schnable, J. C., Paterson, A. H., & Freeling, M. (2011). Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics, 12(1), 1-11. https://doi.org/10.1186/1471-2105-12-102 - PubMed
  95. Thibaud-Nissen, F., DiCuccio, M., Hlavina, W., Kimchi, A., Kitts, P. A., Murphy, T. D., Pruitt, K. D., & Souvorov, A. (2016). P8008 the NCBI eukaryotic genome annotation pipeline. Journal of Animal Science, 94(suppl_4), 184. https://doi.org/10.2527/jas2016.94supplement4184x - PubMed
  96. Thorgaard, G. H., Allendorf, F. W., & Knudsen, K. L. (1983). Gene-centromere mapping in rainbow trout: High interference over long map distances. Genetics, 103(4), 771-783. https://doi.org/10.1093/genetics/103.4.771 - PubMed
  97. Valiquette, E., Perrier, C., Thibault, I., & Bernatchez, L. (2014). Loss of genetic integrity in wild Lake Trout populations following stocking: Insights from an exhaustive study of 72 lakes from Québec. Canada. Evolutionary Applications, 7(6), 625-644. - PubMed
  98. Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18(7), 411. https://doi.org/10.1038/nrg.2017.26 - PubMed
  99. Veale, A. J., & Russello, M. A. (2017). An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-01890-2 - PubMed
  100. Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang, H., Gurtowski, J., & Schatz, M. C. (2017). GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics, 33(14), 2202-2204. https://doi.org/10.1093/bioinformatics/btx153 - PubMed
  101. Waples, R. S., Naish, K. A., & Primmer, C. R. (2020). Conservation and management of salmon in the age of genomics. Annual Review of Animal Biosciences, 8, 117-143. https://doi.org/10.1146/annurev-animal-021419-083617 - PubMed
  102. Watson, M., & Warr, A. (2019). Errors in long-read assemblies can critically affect protein prediction. Nature Biotechnology, 37(2), 124-126. https://doi.org/10.1038/s41587-018-0004-z - PubMed
  103. Whibley, A., Kelley, J., & Narum, S. (2020). The changing face of genome assemblies: Guidance on achieving high-quality reference genomes. Molecular Ecology Resources, 21(3), 641-652. https://doi.org/10.1111/1755-0998.13312 - PubMed
  104. Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/journal.pcbi.1005595 - PubMed
  105. Williams, D., Trimble, W. L., Shilts, M., Meyer, F., & Ochman, H. (2013). Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics, 14(1), 1-11. https://doi.org/10.1186/1471-2164-14-537 - PubMed
  106. Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T., & Christie, M. R. (2018). Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Molecular Ecology, 27(20), 4041-4051. https://doi.org/10.1111/mec.14726 - PubMed
  107. Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P., & Andrews, S. (2015). HiCUP: pipeline for mapping and processing Hi-C data. F1000Research, 4, 1310. https://doi.org/10.12688/f1000research.7334.1 - PubMed
  108. Workman, R. E., Tang, A. D., Tang, P. S., Jain, M., Tyson, J. R., Razaghi, R., Zuzarte, P. C., Gilpatrick, T., Payne, A., Quick, J., Sadowski, N., Holmes, N., de Jesus, J. G., Jones, K. L., Soulette, C. M., Snutch, T. P., Loman, N., Paten, B., Loose, M., … Timp, W. (2019). Nanopore native RNA sequencing of a human poly (A) transcriptome. Nature Methods, 16(12), 1297-1305. https://doi.org/10.1038/s41592-019-0617-2 - PubMed
  109. Zimin, A. V., & Salzberg, S. L. (2020). The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Computational Biology, 16(6), e1007981. https://doi.org/10.1371/journal.pcbi.1007981 - PubMed
  110. Zimmerman, M. S., Krueger, C. C., & Eshenroder, R. L. (2006). Phenotypic diversity of Lake Trout in Great Slave Lake: Differences in morphology, buoyancy, and habitat depth. Transactions of the American Fisheries Society, 135(4), 1056-1067. https://doi.org/10.1577/T05-237.1 - PubMed

Publication Types

Grant support