Display options
Share it on

J Biomed Mater Res B Appl Biomater. 2021 Jul 29; doi: 10.1002/jbm.b.34915. Epub 2021 Jul 29.

The effect of simple heat treatment on apatite formation on grit-blasted/acid-etched dental Ti implants already in clinical use.

Journal of biomedical materials research. Part B, Applied biomaterials

Ayano Ogura, Seiji Yamaguchi, Phuc Thi Minh Le, Kayoko Yamamoto, Michi Omori, Kazuya Inoue, Nahoko Kato-Kogoe, Yoichiro Nakajima, Hiroyuki Nakano, Takaaki Ueno, Tomohiro Yamada, Yoshihide Mori

Affiliations

  1. Department of Dentistry and Oral Surgery, Division of Medicine for Function and Morphology of Sensory Organs, Faculty of Medicine, Osaka Medical College, Takatsuki, Japan.
  2. Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
  3. Department of Biomedical Science, College of Life and Health Sciences, Chubu University, Kasugai, Japan.
  4. Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.

PMID: 34323348 DOI: 10.1002/jbm.b.34915

Abstract

Grit-blasted/acid-etched titanium dental implants have a moderately roughened surface that is suitable for cell adhesion and exhibits faster osseointegration. However, the roughened surface does not always maintain stable fixation over a long period. In this study, a simple heat treatment at 600°C was performed on a commercially available dental Ti implant with grit-blasting/acid-etching, and its effect on mineralization capacity was assessed by examining apatite formation in a simulated body fluid (SBF). The as-purchased implant displayed a moderately roughened surface at the micrometer scale. Its surface was composed of titanium hydride accompanied by a small amount of alumina particles derived from the grit-blasting. Heat treatment transformed the titanium hydride into rutile without evidently changing the surface morphology. The immersion in SBF revealed that apatite formed on the heated implant at 7 days. Furthermore, apatite formed on the Ti rod surface within 1 day when the metal was subjected to acid and heat treatment without blasting. These indicate that apatite formation was conferred on the commercially available dental implant by simple heat treatment, although its induction period was slightly affected by alumina particles remaining on the implant surface. The heat-treated implant should achieve stronger and more stable bone bonding due to its apatite formation.

© 2021 Wiley Periodicals LLC.

Keywords: Ti dental implant; apatite formation; grit-blasting/acid-etching; heat treatment; surface modification

References

  1. Crubézy E, Murail P, Girard L, Bernadou JP. False teeth of the Roman world. Nature. 1998;391:29. - PubMed
  2. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155-170. - PubMed
  3. Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. Br Dent J. 2015;218:E9. - PubMed
  4. Jamat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants surface modifications and their effects on titanium dental implants. Bio Med Res Int. 2015;2015:791725. - PubMed
  5. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844-854. - PubMed
  6. Hacking SA, Tanzer M, Harvey EJ, Krygier JJ, Bobyn JD. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin Orthop Relat Res. 2002;405:24-38. - PubMed
  7. Coelho PG, Granjeiro JM, Romanos GE, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res Part B: Appl Biomater. 2009;88:579-596. - PubMed
  8. Yang GL, He FM, Yang XF, Wang XX, Zhao SF. Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:516-524. - PubMed
  9. Wang X, Hayakawa S, Tsuru K, Osaka A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials. 2002;23:1353-1357. - PubMed
  10. Lu X, Zhao Z, Leng Y. Biomimetic calcium phosphate coatings on nitric acid treated titanium surfaces. Mater Sci Eng C. 2007;27(4):700-708. - PubMed
  11. Matsumoto K, Inoue K, Imagawa N, Nakajima Y, Nakano H, Ueno T. Examination of factor to influence dental implant stability quotient change. J Hard Tissue Biol. 2020;29(2):131-134. - PubMed
  12. Nakajima Y, Ueno T, Kato-Kogoe N, et al. Study on suitability of grafted bone following mandibular reconstruction evaluated according to masticatory performance scores using half-portion gummy jelly. J Hard Tissue Biol. 2016;25(4):427-430. - PubMed
  13. Kokubo T, Pattanayak DK, Yamaguchi S, et al. Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interface. 2010;7:503-513. - PubMed
  14. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907-2915. - PubMed
  15. Kawai T, Takemoto M, Fujibayashi S, et al. Bone-bonding properties of Ti metal subjected to acid and heat treatments. J Mater Sci Mater Med. 2012;23:2981-2992. - PubMed
  16. Kawai T, Takemoto M, Fujibayashi S, et al. Osteoconduction of porous Ti metal enchanced by acid and heat treatments. J Mater Sci Mater Med. 2013;24:1707-1715. - PubMed
  17. Kawai T, Takemoto M, Fujibayashi S, et al. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle. PLoS One. 2014;9(2):e88366. - PubMed
  18. Yamamoto K, Yamaguchi S, Matsushita T, et al. Osteogenic capacity of mixed-acid and heat-treated titanium mesh prepared by a selective laser melting technique. RSC Adv. 2018;8:26069-26077. - PubMed
  19. Inoue K, Nakajima Y, Omori M, et al. Reconstruction of the alveolar bone using bone augmentation with selective laser melting titanium mesh sheet: a report of 2 cases. Implant Dent. 2018;27(5):602-607. - PubMed
  20. Yamamoto K, Yamaguchi S, Matsushita T, et al. Histologic evaluation of bone regeneration using titanium mesh prepared by selective laser melting technique. J Hard Tissue Biol. 2017;26(3):257-260. - PubMed
  21. Schupbach P, Glauser R, Bauer S. Al2O3 particles on titanium dental implant systems following sandblasting and acid-etching process. Int J Biomater. 2019;2019:6318429. - PubMed
  22. Müller L, Müller FA. Preparation of SBF with different HCO3− content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181-189. - PubMed
  23. Pleshko N, Boskey A, Mendelsohn R. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J. 1991;60:786-793. - PubMed
  24. Sroka-Bartnicka A, Borkowski L, Ginalska G, Slosarczyk A, Kazarian SG. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions with ATR-FTIR spectroscopic imaging. Spectrochim Acta A: Mol Biomol Spectrosc. 2017;171:155-161. - PubMed
  25. Chrcanovic BR, Martins MD. Study of the influence of acid etching treatments on the superficial characteristics of Ti. Mater Res. 2014;17(2):373-380. - PubMed
  26. Ban S, Taniki T, Sato H, Kono H, Iwaya Y, Miyamoto M. Acid etching of titanium for bonding with veneering composite resins. Dent Mater J. 2006;25:382-390. - PubMed
  27. Serge SM, Bischof M, Nedir R, Ermrich M. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems. Clin Oral Imp Res. 2010;21:944-950. - PubMed
  28. Le PTM, Shintani SA, Takadama H, et al. Bioactivation treatment with mixed acid and heat on titanium implants fabricated by selective laser melting enhances preosteoblast cell differentiation. Nanomaterials. 2021;11:987. - PubMed
  29. Frank MJ, Walter MS, Lyngstadaas SP, Wintermantel E, Haugen HJ. Hydrogen content in titanium and a titanium-zirconium alloy after acid etching. Mater Sci Eng C. 2013;33:1282-1288. - PubMed
  30. Videm K, Lamolle S, Monjo M, Ellingsen JE, Lyngstadaas SP, Haugen HJ. Hydride formation on titanium surfaces by cathodic polarization. Appl Surf Sci. 2008;255:3011-3015. - PubMed
  31. Pattanayak DK, Yamaguchi S, Matsushita T, Nakamura T, Kokubo T. Apatite-forming ability of titanium in terms of pH of the exposed solution. J R Soc Interface. 2012;9(74):2145-2155. - PubMed
  32. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Groot K. The role of hydrated silica, titania and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28(1):7-15. - PubMed
  33. Kokubo T, Ito S, Huang T, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24(3):331-343. - PubMed
  34. Kitsugi T, Yamamuro T, Nakamura T, Kokubo T. The bonding of glass ceramics to bone. Int Orthop. 1989;13:199-206. - PubMed
  35. Gross U, Struntz V, Bab I, Sela J. The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res. 1981;15:291-305. - PubMed
  36. Coreño-Alonso J, Coreño-Alonso O, Martínez-Rosales JM. Apatite formation on alumina: the role of the initial adsorption of calcium and phosphate ions. Ceram Int. 2014;40(3):4909-4915. - PubMed
  37. Uchida M, Kim HM, Kokubo T, et al. Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment. J Biomed Mater Res. 2002;60(2):277-282. - PubMed
  38. Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res. 2001;57:441-448. - PubMed
  39. LeGeros RZ, LeGeros JP. Dense hydroxyapatite. In: Hench LL, Wilson J, eds. An Introduction to Bioceramics. Singapore: World Scientific; 1993:139-180. - PubMed
  40. Suzuki O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn Dent Sci Rev. 2013;49(2):58-71. - PubMed
  41. Ellouzi K, Elyahyaoui A, Bouhlassa S. Octacalcium phosphate: microwave-assisted hydrothermal synthesis and potentiometric determination of the point of zero charge (PZC) and iso-electric point (IEP). Der Pharm Lett. 2015;7(11):152-159. - PubMed

Publication Types

Grant support