Display options
Share it on

Muscle Nerve. 2021 Nov;64(5):576-584. doi: 10.1002/mus.27399. Epub 2021 Aug 25.

Muscle architecture is associated with muscle fat replacement in Duchenne and Becker muscular dystrophies.

Muscle & nerve

Thom T J Veeger, Erik W van Zwet, Diaa Al Mohamad, Karin J Naarding, Nienke M van de Velde, Melissa T Hooijmans, Andrew G Webb, Erik H Niks, Jurriaan H de Groot, Hermien E Kan

Affiliations

  1. C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
  2. Department of Biostatistics, Leiden University Medical Center, Leiden, The Netherlands.
  3. Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
  4. Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
  5. Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands.

PMID: 34383334 DOI: 10.1002/mus.27399

Abstract

INTRODUCTION/AIMS: Duchenne and Becker muscular dystrophies (DMD and BMD, respectively) are characterized by fat replacement of different skeletal muscles in a specific temporal order. Given the structural role of dystrophin in skeletal muscle mechanics, muscle architecture could be important in the progressive pathophysiology of muscle degeneration. Therefore, the aim of this study was to assess the role of muscle architecture in the progression of fat replacement in DMD and BMD.

METHODS: We assessed the association between literature-based leg muscle architectural characteristics and muscle fat fraction from 22 DMD and 24 BMD patients. Dixon-based magnetic resonance imaging estimates of fat fractions at baseline and 12 (only DMD) and 24 months were related to fiber length and physiological cross-sectional area (PCSA) using age-controlled linear mixed modeling.

RESULTS: DMD and BMD muscles with long fibers and BMD muscles with large PCSAs were associated with increased fat fraction. The effect of fiber length was stronger in muscles with larger PCSA.

DISCUSSION: Muscle architecture may explain the pathophysiology of muscle degeneration in dystrophinopathies, in which proximal muscles with a larger mass (fiber length × PCSA) are more susceptible, confirming the clinical observation of a temporal proximal-to-distal progression. These results give more insight into the mechanical role in the pathophysiology of muscular dystrophies. Ultimately, this new information can be used to help support the selection of current and the development of future therapies.

© 2021 The Authors. Muscle & Nerve published by Wiley Periodicals LLC.

Keywords: MRI; dystrophin; fat fraction; muscle degeneration; pathophysiology

References

  1. Cros D, Harnden P, Pellissier JF, Serratrice G. Muscle hypertrophy in Duchenne muscular dystrophy-a pathological and morphometric study. J Neurol. 1989;236:43-47. - PubMed
  2. Wokke BH, van den Bergen JC, Versluis MJ, et al. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscul Disord. 2014;24:409-416. - PubMed
  3. Tasca G, Iannaccone E, Monforte M, et al. Muscle MRI in Becker muscular dystrophy. Neuromuscul Disord. 2012;22(suppl):S100-S106. - PubMed
  4. Emery AEH. Muscular dystrophy into the new millennium. Neuromuscul Disord. 2002;12:343-349. - PubMed
  5. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA. 1993;90:3710-3714. - PubMed
  6. Pasternak C, Wong S, Elson EL. Mechanical function of dystrophin in muscle cells. J Cell Biol. 1995;128:355-361. - PubMed
  7. Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol. 2000;150:1209-1214. - PubMed
  8. Lacourpaille L, Hug F, Guével A, et al. New insights on contraction efficiency in patients with Duchenne muscular dystrophy. J Appl Physiol. 2014;117:658-662. - PubMed
  9. Lieber RL. Skeletal muscle adaptability. I: Review of basic properties. Dev Med Child Neurol. 1986;28:390-397. - PubMed
  10. Claflin DR, Brooks SV. Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy. Am J Physiol Cell Physiol. 2008;294:C651-C658. - PubMed
  11. Ponrartana S, Ramos-Platt L, Wren TAL, et al. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study. Pediatr Radiol. 2015;45:582-589. - PubMed
  12. Gaeta M, Messina S, Mileto A, et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments preliminary experience. Skelet Radiol. 2012;41:955-961. - PubMed
  13. Mankodi A, Bishop CA, Auh S, Newbould RD, Fischbeck KH, Janiczek RL. Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26:650-658. - PubMed
  14. Løkken N, Hedermann G, Thomsen C, Vissing J. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I. Ann Neurol. 2016;80:466-471. - PubMed
  15. Hollingsworth KG, Higgins DM, McCallum M, Ward L, Coombs A, Straub V. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med. 2014;72:1610-1619. - PubMed
  16. Hu X, Blemker SS. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy. Muscle Nerve. 2015;52:174-182. - PubMed
  17. Naarding KJ, Reyngoudt H, van Zwet EW, et al. MRI vastus lateralis fat fraction predicts loss of ambulation in Duchenne muscular dystrophy. Neurology. 2020;94:e1386-e1394. - PubMed
  18. Hooijmans MT, Niks EH, Burakiewicz J, et al. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:458-464. - PubMed
  19. Hooijmans MT, Froeling M, Koeks Z, et al. Multi-parametric MR in Becker muscular dystrophy patients. NMR Biomed. 2020;33:1-15. - PubMed
  20. van den Bergen JC, Ginjaar HB, Van Essen AJ, et al. Forty-five years of Duchenne muscular dystrophy in The Netherlands. J Neuromuscul Dis. 2014;1:99-109. - PubMed
  21. Wang X, Hernando D, Reeder SB. Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR spectrum. Magn Reson Med. 2016;75:845-851. - PubMed
  22. Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467:1074-1082. - PubMed
  23. Murphy RA, Beardsley AC. Mechanical properties of the cat soleus muscle in situ. Am J Physiol. 1974;227:1008-1013. - PubMed
  24. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1-4. - PubMed
  25. Breheny P, Burchett W. Visualization of regression models using visreg. R J. 2017;9:56-71. - PubMed
  26. Rooney WD, Berlow YA, Triplett WT, et al. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology. 2020;94:e1622-e1633. - PubMed
  27. Kuznetsova A, Brockhoff PB, Christensen RHB. Package: tests in linear mixed effects models. J Stat Softw. 2017;82:1-26. - PubMed
  28. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65-70. - PubMed
  29. Angelini C, Fanin M, Pegoraro E, Freda MP, Cadaldini M, Martinello F. Clinical-molecular correlation in 104 mild X-linked muscular dystrophy patients: characterization of sub-clinical phenotypes. Neuromuscul Disord. 1994;4:349-358. - PubMed
  30. Comi GP, Prelle A, Bresolin N, et al. Clinical variability in Becker muscular dystrophy genetic, biochemical and immunohistochemical correlates. Brain. 1994;117:1-14. - PubMed
  31. Arora H, Willcocks RJ, Lott DJ, et al. Longitudinal timed function tests in duchenne muscular dystrophy: imaging DMD cohort natural history. Muscle Nerve. 2018;58:631-638. - PubMed
  32. Sacks RD, Roy RR. Architecture of the hind limb muscles of cats: functional significance. J Morphol. 1982;173:185-195. - PubMed
  33. Nygaard E, Sanchez J. Intramuscular variation of fiber types in the brachial biceps and the lateral vastus muscles of elderly men: how representative is a small biopsy sample? Anat Rec. 1982;203:451-459. - PubMed
  34. Simoneau J, Bouchard C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995;9:1091-1095. - PubMed
  35. Raz Y, van den Akker EB, Roest T, et al. A data-driven methodology reveals novel myofiber clusters in older human muscles. FASEB J. 2020;34:5525-5537. - PubMed
  36. Burdi AR, Huelke DF, Snyder RG, Lowrey GH. Infants and children in the adult world of automobile safety design: pediatric and anatomical considerations for design of child restraints. J Biomech. 1969;2:267-280. - PubMed
  37. Willis TA, Hollingsworth KG, Coombs A, et al. Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study. PLoS One. 2013;8:e70993. - PubMed
  38. Nichols B, Takeda S, Yokota T. Nonmechanical roles of dystrophin and associated proteins in exercise, neuromuscular junctions, and brains. Brain Sci. 2015;5:275-298. - PubMed
  39. Andersen G, Dahlqvist JR, Vissing CR, Heje K, Thomsen C, Vissing J. MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients. J Neurol. 2017;264:438-447. - PubMed
  40. Gerevini S, Scarlato M, Maggi L, et al. Muscle MRI findings in facioscapulohumeral muscular dystrophy. Eur Radiol. 2016;26:693-705. - PubMed
  41. Fatehi F, Salort-Campana E, Le Troter A, et al. Long-term follow-up of MRI changes in thigh muscles of patients with facioscapulohumeral dystrophy: a quantitative study. PLoS One. 2017;12:e0183825. - PubMed
  42. Statland J, Tawil R. Facioscapulohumeral muscular dystrophy. Neurol Clin. 2014;22:1916-1931. - PubMed

Publication Types