Display options
Share it on

Genes (Basel). 2021 Jul 20;12(7). doi: 10.3390/genes12071102.

Silencing of HMGA2 by siRNA Loaded Methotrexate Functionalized Polyamidoamine Dendrimer for Human Breast Cancer Cell Therapy.

Genes

Fereydoon Abedi Gaballu, William Chi-Shing Cho, Gholamreza Dehghan, Amir Zarebkohan, Behzad Baradaran, Behzad Mansoori, Soheil Abbaspour-Ravasjani, Ali Mohammadi, Nader Sheibani, Ayuob Aghanejad, Jafar Ezzati Nazhad Dolatabadi

Affiliations

  1. Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran.
  2. Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran.
  3. Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
  4. Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran.
  5. Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark.
  6. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran.
  7. McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA.
  8. Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA.
  9. Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran.

PMID: 34356120 PMCID: PMC8303903 DOI: 10.3390/genes12071102

Abstract

The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.

Keywords: HMGA2 siRNA; apoptosis; breast cancer; dendrimer; methotrexate

References

  1. Cell Cycle. 2016 Oct;15(19):2585-2592 - PubMed
  2. J Nanobiotechnology. 2018 Sep 19;16(1):71 - PubMed
  3. Mol Cell. 2007 Dec 14;28(5):746-54 - PubMed
  4. J Cell Biochem. 2019 Jun;120(6):9203-9212 - PubMed
  5. Nat Commun. 2017 Oct 3;8(1):777 - PubMed
  6. Chem Soc Rev. 2017 Jul 17;46(14):4218-4244 - PubMed
  7. Signal Transduct Target Ther. 2018 Mar 16;3:7 - PubMed
  8. Eur J Pharm Sci. 2015 Oct 12;78:19-30 - PubMed
  9. Int J Pharm. 2011 Sep 20;416(2):410-8 - PubMed
  10. Oncotarget. 2016 Mar 15;7(11):12761-82 - PubMed
  11. Colloids Surf B Biointerfaces. 2015 Dec 1;136:383-93 - PubMed
  12. Drug Discov Today. 2020 Aug;25(8):1416-1430 - PubMed
  13. ScientificWorldJournal. 2013 Oct 29;2013:630654 - PubMed
  14. Appl Mater Today. 2018 Sep;12:177-190 - PubMed
  15. Molecules. 2020 Dec 21;25(24): - PubMed
  16. Int J Oncol. 2019 Oct;55(4):775-788 - PubMed
  17. Nat Commun. 2015 Mar 17;6:6590 - PubMed
  18. J Phys Chem B. 2009 Aug 6;113(31):10984-93 - PubMed
  19. Biosci Rep. 2015 Jan 14;35(1): - PubMed
  20. Nat Rev Drug Discov. 2004 Apr;3(4):318-29 - PubMed
  21. Carbohydr Polym. 2018 Sep 15;196:299-312 - PubMed
  22. Cancers (Basel). 2020 Feb 24;12(2): - PubMed
  23. J Cell Physiol. 2019 Aug;234(10):17714-17726 - PubMed
  24. Int J Mol Sci. 2015 Jan 13;16(1):1772-90 - PubMed
  25. EXCLI J. 2021 Mar 08;20:562-584 - PubMed
  26. Clin Exp Med. 2017 Aug;17(3):371-381 - PubMed
  27. Pharmaceutics. 2019 Feb 21;11(2): - PubMed
  28. Oncotarget. 2018 Jan 9;9(8):7891-7901 - PubMed
  29. J Gene Med. 2018 Jul;20(7-8):e3041 - PubMed
  30. Nat Rev Genet. 2015 Sep;16(9):543-52 - PubMed
  31. Genes (Basel). 2021 Feb 13;12(2): - PubMed
  32. J Gastrointest Cancer. 2017 Jun;48(2):156-163 - PubMed
  33. Carbohydr Polym. 2018 Feb 15;182:188-198 - PubMed
  34. Stem Cell Res Ther. 2019 Dec 18;10(1):399 - PubMed
  35. Annu Rev Biophys. 2013;42:217-39 - PubMed
  36. J Biomater Sci Polym Ed. 2021 Feb;32(2):205-228 - PubMed
  37. Acta Biomater. 2017 Jul 15;57:251-261 - PubMed
  38. Macromol Biosci. 2017 Oct;17(10): - PubMed
  39. J Biomed Nanotechnol. 2015 Aug;11(8):1431-41 - PubMed
  40. Genes Cancer. 2012 Jul;3(7-8):467-80 - PubMed
  41. J Control Release. 2015 Jul 10;209:179-85 - PubMed
  42. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Sep-Oct;1(5):502-10 - PubMed
  43. Mod Pathol. 2009 Jan;22(1):43-9 - PubMed
  44. Mol Cancer Res. 2008 May;6(5):743-50 - PubMed
  45. J Cell Biochem. 2019 Apr;120(4):5024-5032 - PubMed

Publication Types