Display options
Share it on

Biology (Basel). 2021 Jul 11;10(7). doi: 10.3390/biology10070646.

Lung Thermal Ablation: Comparison between an Augmented Reality Computed Tomography (CT) 3D Navigation System (SIRIO) and Standard CT-Guided Technique.

Biology

Rosario Francesco Grasso, Flavio Andresciani, Carlo Altomare, Giuseppina Pacella, Gennaro Castiello, Massimiliano Carassiti, Carlo Cosimo Quattrocchi, Eliodoro Faiella, Bruno Beomonte Zobel

Affiliations

  1. Department of Diagnostic and Interventional Radiology, University Hospital Campus Bio-Medico of Rome, Via Alvaro del Portillo, 200, 00128 Rome, Italy.
  2. Unit of Anesthesia, Intensive Care and Pain Management, University Hospital Campus Bio-Medico of Rome, Via Alvaro del Portillo, 200, 00128 Rome, Italy.

PMID: 34356501 PMCID: PMC8301158 DOI: 10.3390/biology10070646

Abstract

(1) Background: The aim of this retrospective study is to assess safety and efficacy of lung radiofrequency (RFA) and microwave ablation (MWA) using an augmented reality computed tomography (CT) navigation system (SIRIO) and to compare it with the standard CT-guided technique. (2) Methods: Lung RFA and MWA were performed with an augmented reality CT 3D navigation system (SIRIO) in 52 patients. A comparison was then performed with a group of 49 patients undergoing the standard CT-guided technique. All the procedures were divided into four groups based on the lesion diameter (>2 cm or ≤2 cm), and procedural time, the number of CT scans, radiation dose administered, and complications rate were evaluated. Technical success was defined as the presence of a "ground glass" area completely covering the target lesion at the immediate post-procedural CT. (3) Results: Full technical success was achieved in all treated malignant lesions for all the considered groups. SIRIO-guided lung thermo-ablations (LTA) displayed a significant decrease in the number of CT scans, procedure time, and patients' radiation exposure (

Keywords: lung ablation; microwave ablation; navigation system; radiation dose; radiofrequency

References

  1. Cardiovasc Intervent Radiol. 2020 May;43(5):667-683 - PubMed
  2. Invest Radiol. 2006 Oct;41(10):713-20 - PubMed
  3. Ann Oncol. 2012 Oct;23(10):2743-2747 - PubMed
  4. Ann Oncol. 2017 Jul 1;28(suppl_4):iv1-iv21 - PubMed
  5. J Thorac Cardiovasc Surg. 2018 Sep;156(3):1233-1246.e1 - PubMed
  6. Chest. 2012 Dec;142(6):1620-1635 - PubMed
  7. Rofo. 2008 Apr;180(4):310-7 - PubMed
  8. AJR Am J Roentgenol. 2011 May;196(5):1194-200 - PubMed
  9. Ann Thorac Surg. 2016 May;101(5):1850-5 - PubMed
  10. Cancer. 2015 Oct 1;121(19):3491-8 - PubMed
  11. Semin Intervent Radiol. 2015 Dec;32(4):416-27 - PubMed
  12. Cardiovasc Intervent Radiol. 2015 Oct;38(5):1231-6 - PubMed
  13. Ann Thorac Surg. 2014 Jul;98(1):243-8 - PubMed
  14. Insights Imaging. 2021 Apr 29;12(1):57 - PubMed
  15. Cancer. 2008 Dec 1;113(11):3121-9 - PubMed
  16. Radiographics. 2014 Sep-Oct;34(5):1344-62 - PubMed
  17. Radiology. 2011 Nov;261(2):643-51 - PubMed
  18. J Vasc Interv Radiol. 2005 Apr;16(4):493-505 - PubMed
  19. J Cardiothorac Surg. 2018 Aug 24;13(1):91 - PubMed
  20. Curr Probl Diagn Radiol. 2009 Jan-Feb;38(1):44-52 - PubMed
  21. Semin Intervent Radiol. 2013 Jun;30(2):169-75 - PubMed
  22. Radiother Oncol. 2015 Feb;114(2):138-47 - PubMed
  23. Curr Oncol. 2021 May 08;28(3):1751-1760 - PubMed
  24. Int J Radiat Oncol Biol Phys. 2018 Jul 1;101(3):564-573 - PubMed
  25. Clin Imaging. 2018 May - Jun;49:101-105 - PubMed
  26. Diagn Interv Imaging. 2017 Sep;98(9):619-625 - PubMed
  27. Chest. 2013 May;143(5 Suppl):e278S-e313S - PubMed
  28. Int J Comput Assist Radiol Surg. 2013 Sep;8(5):837-48 - PubMed
  29. Ann Oncol. 2016 Aug;27(8):1386-422 - PubMed
  30. Radiographics. 2012 Jul-Aug;32(4):947-69 - PubMed
  31. Med Oncol. 2017 May;34(5):96 - PubMed

Publication Types