Display options
Share it on

Sci Adv. 2021 Jul 23;7(30). doi: 10.1126/sciadv.abg5174. Print 2021 Jul.

Intercellular coupling between peripheral circadian oscillators by TGF-β signaling.

Science advances

Anna-Marie Finger, Sebastian Jäschke, Marta Del Olmo, Robert Hurwitz, Adrián E Granada, Hanspeter Herzel, Achim Kramer

Affiliations

  1. Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany. [email protected] [email protected].
  2. Berlin Institute of Health (BIH), Berlin, Germany.
  3. Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
  4. Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany.
  5. Max Planck Institute for Infection Biology, Biochemistry-Protein Purification Core Facility, Charitéplatz 1, 10117 Berlin, Germany.
  6. Charité-Universitätsmedizin, Charité Comprehensive Cancer Center, Laboratory of Systems Oncology, Charitéplatz 1, 10117 Berlin, Germany.
  7. German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Berlin, 69120, Heidelberg, Germany.

PMID: 34301601 PMCID: PMC8302137 DOI: 10.1126/sciadv.abg5174

Abstract

Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways. We identify transforming growth factor-β (TGF-β) as peripheral coupling factor that mediates paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock genes. Disruption of TGF-β signaling causes desynchronization of oscillator networks resulting in reduced amplitude and increased sensitivity toward external zeitgebers. Our findings reveal an unknown mechanism for peripheral clock synchrony with implications for rhythmic organ functions and circadian health.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7728-33 - PubMed
  2. Cell. 2019 May 2;177(4):896-909.e20 - PubMed
  3. BMC Res Notes. 2012 Nov 14;5:636 - PubMed
  4. Mol Cell. 2018 Aug 16;71(4):581-591.e5 - PubMed
  5. Methods Mol Biol. 2021;2130:103-114 - PubMed
  6. Annu Rev Physiol. 2010;72:551-77 - PubMed
  7. Science. 2018 Mar 16;359(6381): - PubMed
  8. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):167-72 - PubMed
  9. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3): - PubMed
  10. Cell Metab. 2017 Jan 10;25(1):118-127 - PubMed
  11. Science. 2003 Nov 21;302(5649):1408-12 - PubMed
  12. Oncogene. 2001 Apr 26;20(18):2205-11 - PubMed
  13. Chronobiol Int. 2015 Apr;32(3):416-27 - PubMed
  14. Biophys J. 2005 Jul;89(1):120-9 - PubMed
  15. BMC Bioinformatics. 2009 Feb 03;10:48 - PubMed
  16. Nat Neurosci. 2005 Apr;8(4):476-83 - PubMed
  17. Biochem Biophys Res Commun. 2012 Mar 9;419(2):441-6 - PubMed
  18. Neuron. 1995 Apr;14(4):697-706 - PubMed
  19. Nat Protoc. 2016 Sep;11(9):1724-43 - PubMed
  20. Mol Hum Reprod. 2018 Dec 1;24(12):602-612 - PubMed
  21. Nat Genet. 2004 Aug;36(8):790-2 - PubMed
  22. Cell. 2019 May 30;177(6):1448-1462.e14 - PubMed
  23. Genome Biol. 2014;15(12):550 - PubMed
  24. Trends Cancer. 2017 Jan;3(1):56-71 - PubMed
  25. Cell. 2011 Oct 28;147(3):565-76 - PubMed
  26. Mol Syst Biol. 2007;3:93 - PubMed
  27. Nat Commun. 2018 Mar 14;9(1):1062 - PubMed
  28. Curr Biol. 2012 Jun 5;22(11):1029-34 - PubMed
  29. Trends Cancer. 2019 Aug;5(8):475-494 - PubMed
  30. J Biol Rhythms. 2013 Jun;28(3):183-92 - PubMed
  31. Cardiovasc Res. 2015 May 1;106(2):284-94 - PubMed
  32. Sci Rep. 2015 Oct 16;5:15212 - PubMed
  33. Nat Rev Mol Cell Biol. 2012 Oct;13(10):616-30 - PubMed
  34. PLoS Biol. 2010 Oct 12;8(10):e1000513 - PubMed
  35. Science. 1992 Mar 20;255(5051):1581-4 - PubMed
  36. Nat Commun. 2018 Apr 19;9(1):1553 - PubMed
  37. PLoS One. 2018 Jun 25;13(6):e0199777 - PubMed
  38. Genes Dev. 2013 Jul 1;27(13):1526-36 - PubMed
  39. J Comp Physiol A. 2000 Feb;186(2):169-80 - PubMed
  40. Science. 2019 Jan 11;363(6423):187-192 - PubMed
  41. Nat Cell Biol. 2008 Oct;10(10):1154-63 - PubMed
  42. Cell Metab. 2017 Jan 10;25(1):102-117 - PubMed
  43. Cell Death Differ. 2020 Aug;27(8):2313-2329 - PubMed
  44. Mol Biosyst. 2017 Sep 26;13(10):1925-1935 - PubMed
  45. Curr Biol. 2004 Aug 24;14(16):1481-6 - PubMed
  46. Curr Biol. 2002 Sep 17;12(18):1574-83 - PubMed
  47. J Biol Rhythms. 2018 Feb;33(1):84-98 - PubMed
  48. Genes Dev. 2009 Mar 15;23(6):708-18 - PubMed
  49. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16219-24 - PubMed
  50. BMC Dev Biol. 2012 Aug 28;12:25 - PubMed
  51. Bioinformatics. 2016 Nov 1;32(21):3351-3353 - PubMed
  52. J Theor Biol. 2002 Jun 21;216(4):501-12 - PubMed
  53. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9506-11 - PubMed
  54. Cancer Res. 2019 Aug 1;79(15):3806-3814 - PubMed
  55. Cell Res. 2009 Jan;19(1):47-57 - PubMed
  56. Neuroscience. 1997 Apr;77(4):1059-66 - PubMed
  57. PLoS Genet. 2014 Jan;10(1):e1004047 - PubMed
  58. Cell. 2009 Oct 2;139(1):199-210 - PubMed
  59. Cell. 2004 Nov 24;119(5):693-705 - PubMed
  60. PLoS Comput Biol. 2013;9(2):e1002940 - PubMed
  61. Front Physiol. 2019 May 09;10:577 - PubMed
  62. Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5339-46 - PubMed
  63. Sci Rep. 2012;2:439 - PubMed
  64. BMC Biotechnol. 2008 Apr 17;8:40 - PubMed
  65. J Biol Chem. 2006 Jul 28;281(30):21183-21197 - PubMed
  66. PLoS One. 2012;7(3):e33334 - PubMed
  67. J Biol Rhythms. 2008 Dec;23(6):483-8 - PubMed
  68. Curr Biol. 2004 Dec 29;14(24):2289-95 - PubMed
  69. Cell. 2013 Jan 31;152(3):492-503 - PubMed
  70. BMC Cancer. 2011 Feb 08;11:59 - PubMed
  71. Oncotarget. 2016 Jun 21;7(25):38164-38179 - PubMed
  72. Dis Model Mech. 2014 Sep;7(9):1123-30 - PubMed
  73. Mol Biol Cell. 2013 Nov;24(22):3569-76 - PubMed
  74. PLoS Genet. 2009 Apr;5(4):e1000442 - PubMed
  75. J Biol Chem. 2007 Apr 13;282(15):11365-76 - PubMed
  76. Mol Syst Biol. 2010 Nov 30;6:438 - PubMed
  77. Cancer Invest. 2002;20(1):55-9 - PubMed
  78. Nat Cell Biol. 2008 Dec;10(12):1463-9 - PubMed
  79. Science. 2000 Sep 29;289(5488):2344-7 - PubMed
  80. Curr Biol. 2002 Apr 2;12(7):540-50 - PubMed
  81. Am J Pathol. 2015 Dec;185(12):3152-63 - PubMed
  82. Genes Dev. 2021 Mar 1;35(5-6):329-334 - PubMed
  83. PLoS One. 2014 Feb 03;9(2):e87573 - PubMed
  84. PLoS Genet. 2018 Jan 29;14(1):e1007189 - PubMed

Publication Types