Display options
Share it on

Front Cell Neurosci. 2021 Jul 23;15:697560. doi: 10.3389/fncel.2021.697560. eCollection 2021.

Cy3-RgIA-5727 Labels and Inhibits α9-Containing nAChRs of Cochlear Hair Cells.

Frontiers in cellular neuroscience

Fernando Fisher, Yuanyuan Zhang, Philippe F Y Vincent, Joanna Gajewiak, Thomas J Gordon, Elisabeth Glowatzki, Paul Albert Fuchs, J Michael McIntosh

Affiliations

  1. Department of Biology, University of Utah, Salt Lake City, UT, United States.
  2. The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
  3. George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States.
  4. Department of Psychiatry, University of Utah School Medicine, Salt Lake City, UT, United States.

PMID: 34385908 PMCID: PMC8354143 DOI: 10.3389/fncel.2021.697560

Abstract

Efferent cholinergic neurons inhibit sensory hair cells of the vertebrate inner ear through the combined action of calcium-permeable α9α10-containing nicotinic acetylcholine receptors (nAChRs) and associated calcium-dependent potassium channels. The venom of cone snails is a rich repository of bioactive peptides, many with channel blocking activities. The conopeptide analog, RgIA-5474, is a specific and potent antagonist of α9α10-containing nAChRs. We added an alkyl functional group to the N-terminus of the RgIA-5474, to enable click chemistry addition of the fluorescent cyanine dye, Cy3. The resulting peptide, Cy3-RgIA-5727, potently blocked mouse α9α10 nAChRs expressed in

Copyright © 2021 Fisher, Zhang, Vincent, Gajewiak, Gordon, Glowatzki, Fuchs and McIntosh.

Keywords: Xenopus; cochlea; conotoxin; mouse; nAChR

Conflict of interest statement

Certain conopeptides have been patented by the University of Utah; JG and JM are inventors on these patents. The remaining authors declare that the research was conducted in the absence of any commerc

References

  1. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021 - PubMed
  2. J Neurophysiol. 2020 Nov 1;124(5):1377-1387 - PubMed
  3. Front Immunol. 2019 Apr 04;10:664 - PubMed
  4. Molecules. 2013 Oct 24;18(11):13148-74 - PubMed
  5. J Neurosci. 2004 Sep 8;24(36):7814-20 - PubMed
  6. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1825-E1832 - PubMed
  7. Aust J Chem. 2020;73(4):327-333 - PubMed
  8. Front Cell Neurosci. 2017 Jul 21;11:219 - PubMed
  9. J Neurosci. 2011 Oct 19;31(42):15092-101 - PubMed
  10. Front Immunol. 2018 Jul 30;9:1604 - PubMed
  11. Nat Commun. 2014 Mar 24;5:3521 - PubMed
  12. Neuron. 1999 May;23(1):93-103 - PubMed
  13. J Immunol. 2015 Sep 1;195(5):2325-34 - PubMed
  14. Brain Res Mol Brain Res. 1998 Jan;53(1-2):78-87 - PubMed
  15. Brain Res Mol Brain Res. 1998 May;56(1-2):287-92 - PubMed
  16. Biochemistry. 2006 Feb 7;45(5):1511-7 - PubMed
  17. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Jan;200(1):5-18 - PubMed
  18. Science. 2000 Jun 30;288(5475):2366-8 - PubMed
  19. J Biol Chem. 2005 Aug 26;280(34):30107-12 - PubMed
  20. Biochem Pharmacol. 2009 Oct 1;78(7):712-9 - PubMed
  21. Life Sci. 2004 Dec 3;76(3):263-80 - PubMed
  22. Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4026-35 - PubMed
  23. Brain Res. 1996 Nov 4;738(2):347-52 - PubMed
  24. Sci Rep. 2020 Dec 11;10(1):21814 - PubMed
  25. J Med Chem. 2021 Jul 8;64(13):9271-9278 - PubMed
  26. Cell. 1994 Nov 18;79(4):705-15 - PubMed
  27. J Neurobiol. 2002 Nov 5;53(2):228-50 - PubMed
  28. J Comp Neurol. 1990 Nov 15;301(3):443-60 - PubMed
  29. J Neurosci. 2021 Jan 6;41(1):47-60 - PubMed
  30. Chem Rev. 2019 Nov 13;119(21):11510-11549 - PubMed
  31. J Clin Med. 2020 Sep 07;9(9): - PubMed
  32. Hear Res. 1994 Dec;81(1-2):49-56 - PubMed
  33. Sci Rep. 2016 Jun 28;6:28660 - PubMed
  34. J Physiol. 2005 Jul 1;566(Pt 1):49-59 - PubMed
  35. J Neurosci. 2020 Jun 17;40(25):4842-4857 - PubMed
  36. Front Immunol. 2018 Apr 25;9:877 - PubMed
  37. J Med Chem. 2021 Feb 11;64(3):1685-1700 - PubMed

Publication Types

Grant support