Display options
Share it on

Pharmaceuticals (Basel). 2021 Jul 13;14(7). doi: 10.3390/ph14070668.

Pharmacokinetic Properties of the Novel Synthetic Cannabinoid 5F-APINAC and Its Influence on Metabolites Associated with Neurotransmission in Rabbit Plasma.

Pharmaceuticals (Basel, Switzerland)

Ksenia M Shestakova, Natalia V Mesonzhnik, Pavel A Markin, Natalia E Moskaleva, Andrey A Nedorubov, Alex Brito, Elizaveta G Appolonova, Roman M Kuznetsov, Natalia L Bochkareva, Alexey Kukharenko, Alexey V Lyundup, Franco Tagliaro, Svetlana A Appolonova

Affiliations

  1. Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
  2. PhD Program in Nanosciences and Advanced Technologies, University of Verona, 37129 Verona, Italy.
  3. World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
  4. Russian Center of Forensic-Medical Expertise of the Ministry of Health, 125284 Moscow, Russia.
  5. Center for Preclinical Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
  6. A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008 Republic of Tatarstan, Russia.
  7. Research and Educational Resource Center for Cellular Technologies of Peoples' Friendship University of Russia, 117198 Moscow, Russia.
  8. Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, 37129 Verona, Italy.

PMID: 34358094 PMCID: PMC8308683 DOI: 10.3390/ph14070668

Abstract

The strong psychoactive effects of synthetic cannabinoids raise the need for the deeper studying of their neurometabolic effects. The pharmacokinetic properties of 5F-APINAC and its influence on metabolomics profiles associated with neurotransmission were investigated in rabbit plasma. Twelve rabbits divided into three groups received 1-mL 5F-APINAC at 0.1, 1 and 2 mg/kg. The intervention groups were compared with the controls. Sampling was performed at nine time points (0-24 h). Ultra-high-performance liquid chromatography-tandem mass spectrometry was used. The pharmacokinetics were dose-dependent (higher curve at a higher dose) with a rapid biotransformation, followed by gradual elimination within 24 h. The tryptophan concentrations abruptly decreased (

Keywords: 5F-APINAC; UPLC-MS/MS; metabolites; metabolomics; neurotransmitters; pharmacokinetics; synthetic cannabinoids

References

  1. Cell Host Microbe. 2018 Jun 13;23(6):716-724 - PubMed
  2. Drug Test Anal. 2015 Jul;7(7):565-76 - PubMed
  3. Am J Pathol. 1998 Feb;152(2):611-9 - PubMed
  4. Curr Neuropharmacol. 2020;18(10):966-1051 - PubMed
  5. J Pharm Biomed Anal. 2019 Jun 5;170:139-152 - PubMed
  6. J Neuroinflammation. 2014 Dec 13;11:204 - PubMed
  7. Ment Health Clin. 2019 Mar 1;9(2):93-99 - PubMed
  8. Handb Exp Pharmacol. 2005;(168):327-65 - PubMed
  9. Rapid Commun Mass Spectrom. 2016 Apr 30;30(8):1067-78 - PubMed
  10. Channels (Austin). 2019 Dec;13(1):162-167 - PubMed
  11. Trends Pharmacol Sci. 2000 Apr;21(4):149-54 - PubMed
  12. AIDS. 1998 Mar 5;12(4):355-63 - PubMed
  13. J Biol Chem. 1999 Jul 30;274(31):21937-42 - PubMed
  14. J Cell Biochem. 2001;81(3):507-13 - PubMed
  15. J Neurochem. 2017 Jul;142(1):118-131 - PubMed
  16. Eur J Pharmacol. 1981 Jul 10;72(4):411-2 - PubMed
  17. J Pharm Biomed Anal. 2017 May 10;138:118-125 - PubMed
  18. Life Sci. 1984 Jul 2;35(1):19-32 - PubMed
  19. J Neurosci. 2001 Oct 1;21(19):7463-73 - PubMed
  20. Pharmaceuticals (Basel). 2010 Aug 13;3(8):2647-2660 - PubMed
  21. Neurosci Lett. 1998 Mar 6;244(1):17-20 - PubMed
  22. Neuropharmacology. 1987 Dec;26(12):1677-83 - PubMed
  23. Comp Biochem Physiol C Toxicol Pharmacol. 2021 May;243:109000 - PubMed
  24. Br J Pharmacol. 1988 Apr;93(4):868-76 - PubMed
  25. Microorganisms. 2020 Mar 12;8(3): - PubMed
  26. Neuropharmacology. 2017 Jan;112(Pt B):373-388 - PubMed
  27. Drug Test Anal. 2016 Sep;8(9):950-6 - PubMed
  28. Biophys J. 2003 Aug;85(2):943-53 - PubMed
  29. J Neurochem. 2011 Sep;118(5):816-25 - PubMed
  30. J Neuroimmunol. 2009 Feb 15;207(1-2):75-82 - PubMed
  31. Eur J Pharmacol. 1999 Jun 30;375(1-3):87-100 - PubMed
  32. Oxid Med Cell Longev. 2018 May 24;2018:5272741 - PubMed
  33. Neuroscience. 1985 Jul;15(3):597-617 - PubMed
  34. Exp Neurol. 2010 Jul;224(1):188-96 - PubMed
  35. J Anal Toxicol. 2017 Jan;41(1):37-44 - PubMed
  36. Behav Brain Res. 2019 Feb 1;359:737-748 - PubMed
  37. Crit Rev Toxicol. 2020 May;50(5):359-382 - PubMed
  38. Eur J Mass Spectrom (Chichester). 2008;14(3):201-9 - PubMed
  39. Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1159-68 - PubMed
  40. J Neurochem. 1991 Jun;56(6):2007-17 - PubMed
  41. J Neurosci. 1989 Jun;9(6):2066-72 - PubMed
  42. Exp Brain Res. 1982;47(2):259-69 - PubMed

Publication Types

Grant support