Display options
Share it on

Pharmaceuticals (Basel). 2021 Jul 16;14(7). doi: 10.3390/ph14070684.

Delaying Effects of Prolactin and Growth Hormone on Aging Processes in Bovine Oocytes Matured In Vitro.

Pharmaceuticals (Basel, Switzerland)

Galina N Singina, Ekaterina N Shedova, Alexander V Lopukhov, Olga S Mityashova, Irina Y Lebedeva

Affiliations

  1. Department of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia.

PMID: 34358110 PMCID: PMC8308928 DOI: 10.3390/ph14070684

Abstract

Aging processes accelerate dramatically in oocytes that have reached the metaphase-II (M-II) stage. The present work aimed to study the patterns and intracellular pathways of actions of prolactin (PRL) and growth hormone (GH) on age-associated changes in bovine M-II oocytes aging in vitro. To this end, we analyzed spontaneous parthenogenetic activation (cytogenetic assay), apoptosis (TUNEL assay), and the developmental capacity (IVF/IVC) of in vitro-matured oocytes after prolonged culturing. Both PRL and GH reduced the activation rate of aging cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs), and their respective hormone receptors were revealed in the ova. The inhibitor of Src-family tyrosine kinases PP2 eliminated the effects of PRL and GH on meiotic arrest in DOs, whereas the MEK inhibitor U0126 only abolished the PRL effect. Furthermore, PRL was able to maintain the apoptosis resistance and developmental competence of aging CEOs. The protein kinase C inhibitor calphostin C suppressed both the actions of PRL. Thus, PRL and GH can directly support meiotic arrest in aging M-II oocytes by activating MAP kinases and/or Src-family kinases. The effect of PRL in maintaining the developmental capacity of aging oocytes is cumulus-dependent and related to the pro-survival action of the protein kinase C-mediated signal pathway.

Keywords: apoptosis; cumulus cells; developmental capacity; growth hormone; oocyte aging; prolactin; receptors; signaling pathways; spontaneous parthenogenetic activation

References

  1. Biol Reprod. 2006 Feb;74(2):395-402 - PubMed
  2. Theriogenology. 1998 Mar;49(4):779-85 - PubMed
  3. Animal. 2011 Feb;5(4):565-71 - PubMed
  4. Mol Reprod Dev. 2014 Oct;81(10):928-45 - PubMed
  5. Hum Reprod. 2003 Dec;18(12):2672-7 - PubMed
  6. J Obstet Gynaecol Res. 2013 Oct;39(10):1431-9 - PubMed
  7. Adv Exp Med Biol. 2020;1247:109-123 - PubMed
  8. Reprod Fertil Dev. 2015 Sep;27(7):1097-105 - PubMed
  9. Endocrinology. 2021 Mar 1;162(3): - PubMed
  10. Hum Reprod. 2008 Mar;23(3):504-13 - PubMed
  11. Biochem Biophys Res Commun. 1999 Jun 24;260(1):167-73 - PubMed
  12. Biol Reprod. 2005 May;72(5):1256-61 - PubMed
  13. Front Biosci (Schol Ed). 2017 Jun 1;9:307-318 - PubMed
  14. Gen Comp Endocrinol. 2013 Apr 1;184:1-8 - PubMed
  15. Mol Cell Endocrinol. 2008 Jan 30;282(1-2):56-62 - PubMed
  16. Hum Reprod. 1998 Feb;13(2):394-7 - PubMed
  17. Reprod Biol Endocrinol. 2013 Sep 04;11:87 - PubMed
  18. Biol Reprod. 2002 Feb;66(2):495-9 - PubMed
  19. Mol Cell Endocrinol. 2021 Jan 15;520:111075 - PubMed
  20. Mol Hum Reprod. 2019 Oct 28;25(10):660-667 - PubMed
  21. Reprod Biol Endocrinol. 2014 Nov 26;12:117 - PubMed
  22. Mol Cell Endocrinol. 2008 Jan 30;282(1-2):150-2 - PubMed
  23. Reproduction. 2015 Mar;149(3):R103-14 - PubMed
  24. J Exp Zool. 1988 Nov;248(2):222-31 - PubMed
  25. Int Rev Cell Mol Biol. 2017;331:83-122 - PubMed
  26. Biol Reprod. 2009 Aug;81(2):415-25 - PubMed
  27. Aging (Albany NY). 2017 Jun 26;9(6):1552-1564 - PubMed
  28. BMC Pregnancy Childbirth. 2020 Aug 12;20(1):460 - PubMed
  29. Reproduction. 2012 Jan 1;143(1):1-10 - PubMed
  30. Hum Reprod. 2017 Dec 1;32(12):2474-2484 - PubMed
  31. Cell Reprogram. 2017 Jun;19(3):145-149 - PubMed
  32. Mol Endocrinol. 2004 Dec;18(12):3064-75 - PubMed
  33. Reproduction. 2017 Oct;154(4):535-545 - PubMed
  34. Biol Reprod. 1998 Oct;59(4):836-42 - PubMed
  35. Hum Reprod Update. 2006 Jul-Aug;12(4):363-72 - PubMed
  36. Theriogenology. 1999 May;51(7):1363-74 - PubMed
  37. J Anim Sci. 1994 Feb;72(2):434-7 - PubMed
  38. Biol Reprod. 2013 Mar 21;88(3):67 - PubMed
  39. Front Cell Dev Biol. 2021 Mar 08;9:648057 - PubMed
  40. Theriogenology. 1986 Apr;25(4):591-600 - PubMed
  41. J Reprod Dev. 2019 Dec 18;65(6):499-506 - PubMed
  42. Anim Biosci. 2021 Apr;34(4):546-557 - PubMed
  43. Int J Dev Biol. 2012;56(10-12):809-17 - PubMed
  44. Front Genet. 2015 Aug 27;6:274 - PubMed
  45. Theriogenology. 2014 Nov;82(8):1154-64 - PubMed
  46. Biol Reprod. 2003 May;68(5):1584-9 - PubMed
  47. Biol Reprod. 2009 Mar;80(3):493-502 - PubMed
  48. Biol Reprod. 2007 Mar;76(3):532-41 - PubMed
  49. J Reprod Dev. 2014 Mar 7;60(1):21-7 - PubMed
  50. J Biol Chem. 2003 May 23;278(21):18902-13 - PubMed
  51. Endocr Relat Cancer. 2007 Jun;14(2):325-35 - PubMed
  52. Hum Reprod Update. 2009 Sep-Oct;15(5):573-85 - PubMed
  53. Biol Reprod. 2014 Aug;91(2):45 - PubMed
  54. Reprod Fertil Dev. 2014;26(4):562-9 - PubMed
  55. Aging (Albany NY). 2018 Jul 26;10(7):1745-1757 - PubMed
  56. J Biomed Sci. 2015 May 22;22:36 - PubMed

Publication Types

Grant support