Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Aug 03;118(31). doi: 10.1073/pnas.2023373118.

PolyG-DS: An ultrasensitive polyguanine tract-profiling method to detect clonal expansions and trace cell lineage.

Proceedings of the National Academy of Sciences of the United States of America

Yuezheng Zhang, Brendan F Kohrn, Ming Yang, Daniela Nachmanson, T Rinda Soong, I-Hsiu Lee, Yong Tao, Hans Clevers, Elizabeth M Swisher, Teresa A Brentnall, Lawrence A Loeb, Scott R Kennedy, Jesse J Salk, Kamila Naxerova, Rosa Ana Risques

Affiliations

  1. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195.
  2. Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114.
  3. Department of Radiology, Harvard Medical School, Boston, MA 02114.
  4. Division of Human Biology, Fred Hutchinson Cancer Research Center, WA 98019.
  5. Division of Clinical Research, Fred Hutchinson Cancer Research Center, WA 98019.
  6. Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, Netherlands.
  7. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA 98195.
  8. Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98195.
  9. Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195.
  10. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195; [email protected].

PMID: 34330826 PMCID: PMC8346827 DOI: 10.1073/pnas.2023373118

Abstract

Polyguanine tracts (PolyGs) are short guanine homopolymer repeats that are prone to accumulating mutations when cells divide. This feature makes them especially suitable for cell lineage tracing, which has been exploited to detect and characterize precancerous and cancerous somatic evolution. PolyG genotyping, however, is challenging because of the inherent biochemical difficulties in amplifying and sequencing repetitive regions. To overcome this limitation, we developed PolyG-DS, a next-generation sequencing (NGS) method that combines the error-correction capabilities of duplex sequencing (DS) with enrichment of PolyG loci using CRISPR-Cas9-targeted genomic fragmentation. PolyG-DS markedly reduces technical artifacts by comparing the sequences derived from the complementary strands of each original DNA molecule. We demonstrate that PolyG-DS genotyping is accurate, reproducible, and highly sensitive, enabling the detection of low-frequency alleles (<0.01) in spike-in samples using a panel of only 19 PolyG markers. PolyG-DS replicated prior results based on PolyG fragment length analysis by capillary electrophoresis, and exhibited higher sensitivity for identifying clonal expansions in the nondysplastic colon of patients with ulcerative colitis. We illustrate the utility of this method for resolving the phylogenetic relationship among precancerous lesions in ulcerative colitis and for tracing the metastatic dissemination of ovarian cancer. PolyG-DS enables the study of tumor evolution without prior knowledge of tumor driver mutations and provides a tool to perform cost-effective and easily scalable ultra-accurate NGS-based PolyG genotyping for multiple applications in biology, genetics, and cancer research.

Keywords: cancer evolution; carcinogenic fields; phylogenetic reconstruction; preneoplastic; somatic evolution

Conflict of interest statement

Competing interest statement: S.R.K., L.A.L., and R.A.R. are consultants and equity holders at TwinStrand Biosciences Inc. J.J.S. is an employee and equity holder at TwinStrand Biosciences Inc. S.R.K.

References

  1. Nature. 2020 Feb;578(7793):122-128 - PubMed
  2. Genome Res. 2018 Oct;28(10):1589-1599 - PubMed
  3. Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1889-98 - PubMed
  4. Nature. 2020 Jan;577(7789):254-259 - PubMed
  5. Trends Cancer. 2019 Sep;5(9):531-540 - PubMed
  6. Nat Genet. 2020 Sep;52(9):898-907 - PubMed
  7. J Pathol. 2012 Feb;226(3):421-6 - PubMed
  8. Nat Rev Cancer. 2018 Jan;18(1):19-32 - PubMed
  9. Genome Res. 2015 May;25(5):750-61 - PubMed
  10. Nat Methods. 2015 May;12(5):423-5 - PubMed
  11. Cancer Discov. 2016 Dec;6(12):1342-1351 - PubMed
  12. Nat Commun. 2017 Oct 23;8(1):1093 - PubMed
  13. Nat Rev Cancer. 2019 Jun;19(6):349-358 - PubMed
  14. Science. 2017 Jul 07;357(6346):55-60 - PubMed
  15. Genome Med. 2019 Mar 29;11(1):20 - PubMed
  16. Nature. 2016 Oct 13;538(7624):260-264 - PubMed
  17. Cell. 2017 Feb 9;168(4):613-628 - PubMed
  18. Nat Genet. 2020 Jul;52(7):692-700 - PubMed
  19. Nat Commun. 2017 Feb 07;8:14291 - PubMed
  20. Cell. 2020 Jul 9;182(1):12-23 - PubMed
  21. Int J Gynecol Pathol. 2016 Jan;35(1):48-55 - PubMed
  22. Nature. 2011 Jun 29;474(7353):609-15 - PubMed
  23. Nat Rev Gastroenterol Hepatol. 2017 Apr;14(4):218-229 - PubMed
  24. Inflamm Bowel Dis. 2013 Nov;19(12):2593-602 - PubMed
  25. Genetics. 2003 Jun;164(2):781-7 - PubMed
  26. J Pathol. 2010 May;221(1):49-56 - PubMed
  27. Genome Med. 2019 May 28;11(1):35 - PubMed
  28. Nature. 2020 Feb;578(7793):82-93 - PubMed
  29. PLoS Genet. 2018 Jan 4;14(1):e1007108 - PubMed
  30. J Clin Pathol. 2020 Jul;73(7):391-402 - PubMed
  31. Cell. 2020 Aug 6;182(3):672-684.e11 - PubMed
  32. Nature. 2020 Jan;577(7789):260-265 - PubMed
  33. BMC Genomics. 2013 Jan 18;14:39 - PubMed
  34. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20871-6 - PubMed
  35. Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2463-2474 - PubMed
  36. Gynecol Oncol. 2019 Feb;152(2):426-433 - PubMed
  37. Hum Mutat. 2013 Sep;34(9):1304-11 - PubMed
  38. Hum Mol Genet. 2002 Mar 15;11(6):707-13 - PubMed
  39. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5448-53 - PubMed
  40. Genetics. 2008 Feb;178(2):967-77 - PubMed
  41. Science. 1976 Oct 1;194(4260):23-8 - PubMed
  42. Nat Rev Genet. 2018 May;19(5):269-285 - PubMed
  43. Genome Res. 2012 Jun;22(6):1154-62 - PubMed
  44. Hum Mol Genet. 1993 Aug;2(8):1123-8 - PubMed
  45. Carcinogenesis. 2018 Jan 12;39(1):11-20 - PubMed
  46. Nat Rev Genet. 2004 Jun;5(6):435-45 - PubMed
  47. Gut. 2019 Jun;68(6):985-995 - PubMed
  48. Evol Dev. 2010 Jan-Feb;12(1):84-94 - PubMed
  49. Bioinformatics. 2011 Feb 15;27(4):592-3 - PubMed
  50. Nat Genet. 2016 Jul;48(7):758-67 - PubMed
  51. Nat Protoc. 2014 Nov;9(11):2586-606 - PubMed
  52. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  53. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 - PubMed
  54. Curr Opin Genet Dev. 2017 Jun;44:9-16 - PubMed

Publication Types

Grant support