Display options
Share it on

Neurochem Res. 2021 Dec;46(12):3179-3189. doi: 10.1007/s11064-021-03417-8. Epub 2021 Aug 13.

Glutamate, Glutamine, GABA and Oxidative Products in the Pons Following Cortical Injury and Their Role in Motor Functional Recovery.

Neurochemical research

Laura E Ramos-Languren, Alberto Avila-Luna, Gabriela García-Díaz, Roberto Rodríguez-Labrada, Yaimee Vázquez-Mojena, Carmen Parra-Cid, Sergio Montes, Antonio Bueno-Nava, Rigoberto González-Piña

Affiliations

  1. Faculty of Psychology, Coordination of Psychobiology and Neurosciences, National Autonomous University of Mexico, Av. Universidad 3040 Col, Copilco Universidad Alcaldía Coyoacán, 04510, Mexico City, Mexico.
  2. National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico.
  3. Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
  4. School of Physical Culture, University of Holguín, Avenida XX Aniversario, 80100, Holguín, Cuba.
  5. Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba.
  6. Reynosa-Aztlan Multidisciplinary Unit, Autonomous University of Tamaulipas, Fuente de Diana, Aztlán, 88740, Tamaulipas, Mexico.
  7. Laboratory of Aging Biology, National Geriatric Institute, Av. Contreras 428 Col. San Jerónimo Lídice Alcaldía Magdalena Contreras, 10200, Mexico City, Mexico. [email protected].
  8. Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico. [email protected].
  9. Department of Special Education, University of the Americas Mexico City College, Puebla # 223 Col. Roma Alcaldía Cuauhtemoc, 06700, Mexico City, Mexico. [email protected].

PMID: 34387812 DOI: 10.1007/s11064-021-03417-8

Abstract

Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Brain injury; Cerebellum; Lipid peroxidation; Pons; Rats

References

  1. Bueno-Nava A, Montes S, DelaGarza-Montano P, Alfaro-Rodriguez A, Ortiz A, Gonzalez-Pina R (2008) Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neurosci Lett 443:32–36 - PubMed
  2. Kim Y, Kim S-H, Kim J-S, Hong BY (2018) Modification of Cerebellar Afferent Pathway in the Subacute Phase of Stroke. J Stroke Cerebrovasc Dis 27:2445–2452 - PubMed
  3. Hayes JP, Bigler ED, Verfaellie M (2016) Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc 22:120–137 - PubMed
  4. Kim Y, Lim SH, Park GY (2019) Crossed cerebellar diaschisis has an adverse effect on functional outcome in the subacute rehabilitation phase of stroke: a case-control study. Arch Phys Med Rehabil 100:1308–1316 - PubMed
  5. Kim JS, Kim S-H, Lim SH, Im S, Hong BY, Oh J, Kim Y (2019) Degeneration of the inferior cerebellar peduncle after middle cerebral artery stroke. Stroke 50:2700–2707 - PubMed
  6. Gonzalez-Pina R, Bueno-Nava A, Montes S, Alfaro-Rodriguez A, Gonzalez-Maciel A, Reynoso-Robles R, Ayala-Guerrero F (2006) Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury. Neurochem Res 31:1443–1449 - PubMed
  7. Ramos-Languren LE, González-Piña R, Montes S, Chávez-García N, Ávila-Luna A, Barón-Flores V, Ríos C (2016) Sensorimotor recovery from cortical injury is accompanied by changes on norepinephrine and serotonin levels in the dentate gyrus and pons. Behav Brain Res 1(297):297–306 - PubMed
  8. Zhang D, Xiao M, Wang L, Jia W (2019) Blood-based glutamate scavengers reverse traumatic brain injury-induced synaptic plasticity disruption by decreasing glutamate level in hippocampus interstitial fluid, but not cerebral spinal fluid, in vivo. Neurotox Res 35:360–372 - PubMed
  9. Hovda DA, Fenney DM (1984) Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res 298:358–361 - PubMed
  10. Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, Li G, Li Z, Li X, Zhang X, He X, Duan C (2019) Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 16:8 - PubMed
  11. Suzuki H (2015) What is early brain injury? Transl Stroke Res 6:1–3 - PubMed
  12. Yang S, Chen X, Li S, Sun B, Hang C (2018) Melatonin treatment regulates SIRT3 Expression in early brain injury (EBI) due to Reactive oxygen species (ROS) in a mouse model of Subarachnoid hemorrhage (SAH). Med Sci Monit 24:3804–3814 - PubMed
  13. Goldstein LB (2000) Effects of amphetamines and small related molecules on recovery after stroke in animals and man. Neuropharmacology 39:852–859 - PubMed
  14. Boyeson MG, Feeney DM (1990) Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 35:497–501 - PubMed
  15. Boyeson MG, Krobert KA (1992) Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury. Brain Res Bull 29:435–439 - PubMed
  16. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112 - PubMed
  17. Guerriero RM, Giza CC, Rotenberg A (2015) Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. https://doi.org/10.1007/s11910-015-0545-1 - PubMed
  18. Brailowsky S, Knight RT, Blood K, Scabini D (1986) gamma-Aminobutyric acid-induced potentiation of cortical hemiplegia. Brain Res 362:322–330 - PubMed
  19. Katz DI, Alexander MP, Klein RB (1998) Recovery of arm function in patients with paresis after traumatic brain injury. Arch Phys Med Rehabil 79:488–493 - PubMed
  20. Niimura K, Chugani DC, Muzik O, Chugani HT (1999) Cerebellar reorganization following cortical injury in humans: effects of lesion size and age. Neurology 52:792–797 - PubMed
  21. Yasen AL, Smith J, Christie AD (2018) Glutamate and GABA concentrations following mild traumatic brain injury: a pilot study. J Neurophysiol 120:1318–1322 - PubMed
  22. O’Dell DM, Gibson CJ, Wilson MS, DeFord SM, Hamm RJ (2000) Positive and negative modulation of the GABA(A) receptor and outcome after traumatic brain injury in rats. Brain Res 861:325–332 - PubMed
  23. Cenni G, Blandina P, Mackie K, Nosi D, Formigli L, Giannoni P, Ballini C, Della Corte L, Mannaioni PF, Passani MB (2006) Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. Eur J Neurosci 24:1633–1644 - PubMed
  24. Anthonymuthu TS, Kenny EM, Bayır H (2016) Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res 1640:57–76 - PubMed
  25. Krobert KA, Sutton RL, Feeney DM (1994) Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. J Neurochem 62:2233–2240 - PubMed
  26. Serteser M, Úzben T, Gümüslü S, Balkan S, Balkan E (2001) Biochemical evidence of crossed cerebellar diaschisis in terms of nitric oxide indicators and lipid peroxidation products in rats during focal cerebral ischemia. Acta Neurol Scand 103:43–48 - PubMed
  27. Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R (2004) Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557:689–700 - PubMed
  28. Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164 - PubMed
  29. D’Ambrosio R, Perucca E (2004) Epilepsy after head injury. Curr Opin Neurol 17:731–735 - PubMed
  30. Davies KJA (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31 - PubMed
  31. Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1:358–364 - PubMed
  32. Murakami T, Takemori K, Yoshizumi H (1995) Prediction of stroke lesions in stroke-prone spontaneously hypertensive rats by glutathione peroxidase in erythrocytes. Biosci Biotechnol Biochem 59:1459–1463 - PubMed
  33. Biagini G, Zoli M, Torri C, Boschi S, Vantaggiato G, Ballestri M, Baraldi A, Agnati LF (1997) Protective effects of delapril, indapamide and their combination chronically administered to stroke-prone spontaneously hypertensive rats fed a high-sodium diet. Clin Sci (Lond) 93:401–411 - PubMed
  34. Tejada S, Sureda A, Roca C, Gamundí A, Esteban S (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bullet 71:372–375 - PubMed
  35. Santos PSd, Costa JP, Tomé AdR, Saldanha GB, de Souza GF, Feng D, de Freitas RM (2011) Oxidative stress in rat striatum after pilocarpine-induced seizures is diminished by alpha-tocopherol. Eur J Pharmacol 668:65–71 - PubMed
  36. Fabene PF, Merigo F, Benati D, Farace P, Nicolato E, Marzola P, Sbarbati A (2007) Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PloS One 2:e1105 - PubMed
  37. Biagini G, Baldelli E, Longo D, Contri MB, Guerrini U, Sironi L, Gelosa P, Zini I, Ragsdale DS, Avoli M (2008) Proepileptic influence of a focal vascular lesion affecting entorhinal cortex-CA3 connections after status epilepticus. J Neuropathol Exp Neurol 67:687–701 - PubMed
  38. Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–830 - PubMed
  39. Goldstein LB (2006) Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx 3:451–457 - PubMed
  40. Maharaj DS, Limson JL, Daya S (2003) 6-Hydroxymelatonin converts Fe (III) to Fe (II) and reduces iron-induced lipid peroxidation. Life Sci 72:1367–1375 - PubMed
  41. Halliwell B, Gutteridge JMC (1997) Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem 69:1330–1330 - PubMed
  42. Zhang Y, Lu X, Tai B, Li W, Li T (2021) Ferroptosis and its multifaceted roles in cerebral stroke. Front Cell Neurosci 15:1–10 - PubMed
  43. She X, Lan B, Tian H, Tang B (2020) Cross talk between ferroptosis and cerebral ischemia. Front Neurosci 14:1–9 - PubMed
  44. Festing MF (2018) On determining sample size in experiments involving laboratory animals. Lab Anim 52:341–350 - PubMed
  45. Harris JL, Yeh HW, Choi IY, Lee P, Berman NE, Swerdlow RH, Craciunas SC, Brooks WM (2012) Altered neurochemical profile after traumatic brain injury: H-1-MRS biomarkers of pathological mechanisms. J Cereb Blood Flow Metab 32:2122–2134 - PubMed
  46. Olfert E, Cross B, Mc William A (1993) Guide for the care and use of experimental animals. Can Council Animal Care 1:211 - PubMed
  47. NOM-062-ZOO-1999 (2001) Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. In. Diario Oficial de la Federación. - PubMed
  48. Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38 - PubMed
  49. Paxinos G, Watson C (1982) WITHDRAWN: Plates and Figures. In: Paxinos G, Watson C (eds) The Rat Brain in Stereotaxic Coordinates. Academic Press, USA, pp 13–153 - PubMed
  50. Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, Nekrassov-Protasova V, Durand-Rivera A, Montes S, Ayala-Guerrero F (2010) Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochem Res 35:1538–1545 - PubMed
  51. Garcia JH, Wagner S, Liu K-F, Hu X-j (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Stroke 26:627–635 - PubMed
  52. Triggs WJ, Willmore LJ (1984) In vivo lipid-peroxidation in rat-brain following intracortical Fe-2+ injection. J Neurochem 42:976–980 - PubMed
  53. Santamaría A, Ríos C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid-peroxidation in rat corpus striatum. Neurosci Lett 159:51–54 - PubMed
  54. Montes S, Alcaraz-Zubeldia M, Muriel P, Rios C (2003) Role of manganese accumulation in increased brain glutamine of the cirrhotic rat. Neurochem Res 28:911–917 - PubMed
  55. González-Piña R, Paz C (1997) Brain monoamine changes in rats after short periods of ozone exposure. Neurochem Res. https://doi.org/10.1023/A:1027329405112 - PubMed
  56. Ahmad SO, Baun J, Tipton B, Tate Y, Switzer RC (2019) Modification of AgNOR staining to reveal the nucleolus in thick sections specified for stereological and pathological assessments of brain tissue. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e03047 - PubMed
  57. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425 - PubMed
  58. Hall ED, Wang JA, Miller DM, Cebak JE, Hill RL (2019) Newer pharmacological approaches for antioxidant neuroprotection in traumatic brain injury. Neuropharmacology 145:247–258 - PubMed
  59. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine–glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 40:402–409 - PubMed
  60. Gu F, Chauhan V, Chauhan A (2015) Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care 18:89–95 - PubMed
  61. Rafalowska U, Liu G-J, Floyd RA (1989) Peroxidation induced changes in synaptosomal transport of dopamine and γ-aminobutyric acid. Free Radical Biol Med 6:485–492 - PubMed
  62. Folkersma H, Foster Dingley JC, van Berckel BN, Rozemuller A, Boellaard R, Huisman MC, Lammertsma AA, Vandertop WP, Molthoff CF (2011) Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation 8:67 - PubMed
  63. Amorini AM, Lazzarino G, Di Pietro V, Signoretti S, Belli A, Tavazzi B (2017) Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. J Cell Mol Med 21:530–542 - PubMed
  64. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, Martin NA, Becker DP (1998) Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 89:971–982 - PubMed
  65. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C (2010) Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 113:564–570 - PubMed
  66. Henry LC, Tremblay S, Boulanger Y, Ellemberg D, Lassonde M (2010) Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma 27:65–76 - PubMed
  67. Xu S, Zhuo JC, Racz J, Shi D, Roys S, Fiskum G, Gullapalli R (2011) Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study. J Neurotrauma 28:2091–2102 - PubMed
  68. Diaz-Ruiz A, Salgado-Ceballos H, Montes S, Maldonado V, Tristan L, Alcaraz-Zubeldia M, Ríos C (2007) Acute alterations of glutamate, glutamine, GABA, and other amino acids after spinal cord contusion in rats. Neurochem Res 32:57–63 - PubMed
  69. MaI A-S, Medina MÁ (1999) Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab 67:100–105 - PubMed
  70. Petito CK, Chung MC, Verkhovsky LM, Cooper AJL (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569:275–280 - PubMed
  71. Kim YK, Yang EJ, Cho K, Lim JY, Paik N-J (2014) Functional recovery after ischemic stroke is associated with reduced GABAergic inhibition in the cerebral cortex: a GABA PET study. Neurorehabil Neural Repair 28:576–583 - PubMed
  72. Aston-Jones G, Rajkowski J, Cohen J (2000) Locus coeruleus and regulation of behavioral flexibility and attention. In: Aston-Jones G, Rajkowski J, Cohen J (eds) Progress in Brain Research. Elsevier, Amsterdam, pp 165–182 - PubMed
  73. Lai YY, Clements JR, Siegel JM (1993) Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. Journal of Comparative Neurology 336:321–330 - PubMed
  74. Urrutia PJ, Bórquez DA, Núñez MT (2021) Inflaming the brain with iron. Antioxidants 10:1–27 - PubMed
  75. Petrova J, Manolov V, Vasilev V, Tzatchev K, Marinov B (2016) Ischemic stroke, inflammation, iron overload—Connection to a hepcidin. Int J Stroke. https://doi.org/10.1177/1747493015607509 - PubMed
  76. Daglas M, Adlard PA (2018) The involvement of iron in traumatic brain injury and neurodegenerative disease. Front Neurosci. https://doi.org/10.3389/fnins.2018.00981 - PubMed
  77. Rahman AA, Amruta N, Pinteaux E, Bix GJ (2021) Neurogenesis after stroke: a therapeutic perspective. Transl Stroke Res 12:1–14 - PubMed
  78. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:491–500 - PubMed

Publication Types

Grant support