Display options
Share it on

Neurotoxicology. 2021 Sep;86:166-171. doi: 10.1016/j.neuro.2021.08.005. Epub 2021 Aug 10.

Impact of environmental toxicants on p38- and ERK-MAPK signaling pathways in the central nervous system.

Neurotoxicology

Omamuyovwi M Ijomone, Joy D Iroegbu, Michael Aschner, Julia Bornhorst

Affiliations

  1. Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany; The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria. Electronic address: [email protected].
  2. The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria.
  3. Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
  4. Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.

PMID: 34389354 PMCID: PMC8440482 DOI: 10.1016/j.neuro.2021.08.005

Abstract

There are several candidate signalling pathways that mediate the response of the central nervous system (CNS) cells to environmental toxins. However, much is still to be learned on how these pathways modulate neurotoxicity. The mitogen-activated protein kinases (MAPKs) signalling pathways, which include the extracellular signal-regulated protein kinase (ERK) and the p38-MAPK, are potentially key pathways to regulate CNS responses to environmental toxins. The pathways play leading roles in the transmission of extracellular signals into the cell nucleus, leading to cell differentiation, cell growth, and apoptosis, to name a few. Moreover, exposure to environmental toxins induces p38- and ERK-MAPK activation, which leads to oxidative stress, inflammation, and apoptosis in the CNS. Here, we provide a concise review of the recent evidence demonstrating the role of p38- and ERK-MAPK signaling pathways and their downstream targets in the CNS following exposure to environmental toxicants such as metals, organophosphorus and persistent organic pollutants.

Copyright © 2021 Elsevier B.V. All rights reserved.

Keywords: CNS; MAPK signalling; Metals; Organophosphorus; Persistent organic pollutants

References

  1. Neuropharmacology. 2010 Mar;58(3):561-8 - PubMed
  2. Curr Opin Toxicol. 2021 Jun;26:1-7 - PubMed
  3. Brain Res Bull. 2018 Jun;140:154-161 - PubMed
  4. J Neuroinflammation. 2019 Feb 21;16(1):46 - PubMed
  5. Neurotoxicology. 2018 Jan;64:219-229 - PubMed
  6. Cell Death Dis. 2018 Jun 13;9(6):700 - PubMed
  7. Cells. 2019 Jul 18;8(7): - PubMed
  8. Int J Mol Sci. 2020 Jun 15;21(12): - PubMed
  9. Biochem J. 2010 Aug 1;429(3):403-17 - PubMed
  10. Neurotoxicology. 2020 Dec;81:51-65 - PubMed
  11. Chemosphere. 2016 Feb;144:1771-9 - PubMed
  12. J Neuroinflammation. 2019 May 10;16(1):98 - PubMed
  13. J Appl Toxicol. 2018 Aug;38(8):1058-1070 - PubMed
  14. Toxicol Lett. 2019 Jul;309:10-19 - PubMed
  15. Front Neurosci. 2016 Jun 01;10:233 - PubMed
  16. Eur J Pharmacol. 2008 Jan 6;578(1):11-8 - PubMed
  17. J Appl Toxicol. 2015 Dec;35(12):1539-49 - PubMed
  18. Chemosphere. 2020 Aug;252:126470 - PubMed
  19. Curr Med Chem. 2021;28(7):1422-1442 - PubMed
  20. J Agric Food Chem. 2019 Mar 6;67(9):2709-2715 - PubMed
  21. Toxicol Res (Camb). 2017 Apr 17;6(4):412-419 - PubMed
  22. Sci Total Environ. 2021 Mar 25;762:143054 - PubMed
  23. Molecules. 2021 Jan 13;26(2): - PubMed
  24. Oncotarget. 2016 May 10;7(19):28697-710 - PubMed
  25. J Neurosci. 2013 Feb 6;33(6):2313-25 - PubMed
  26. J Neuroinflammation. 2020 Jan 10;17(1):13 - PubMed
  27. Mol Cell Neurosci. 2005 Mar;28(3):430-9 - PubMed
  28. J Alzheimers Dis. 2020;76(4):1215-1242 - PubMed
  29. Free Radic Biol Med. 2015 Oct;87:312-25 - PubMed
  30. J Appl Toxicol. 2009 May;29(4):338-45 - PubMed
  31. Neurotoxicology. 2017 May;60:82-91 - PubMed
  32. PLoS One. 2019 Jan 15;14(1):e0210248 - PubMed
  33. FASEB J. 2017 Nov;31(11):4998-5011 - PubMed
  34. Mol Cancer. 2020 Jan 28;19(1):17 - PubMed
  35. Sci Rep. 2017 Dec;7(1):115 - PubMed
  36. Toxicol Lett. 2017 Apr 5;271:66-73 - PubMed
  37. Front Mol Neurosci. 2017 Oct 24;10:339 - PubMed
  38. Prog Brain Res. 2018;241:63-112 - PubMed
  39. Glia. 2010 Aug 15;58(11):1384-93 - PubMed
  40. J Neurotrauma. 2011 Mar;28(3):371-81 - PubMed
  41. Glia. 2019 Jul;67(7):1320-1332 - PubMed
  42. Toxicol Appl Pharmacol. 2014 Jul 15;278(2):159-71 - PubMed
  43. Neurotoxicol Teratol. 2018 Jan - Feb;65:60-69 - PubMed
  44. Toxicol Mech Methods. 2011 Jul;21(6):435-43 - PubMed
  45. Cell. 2005 Feb 11;120(3):407-20 - PubMed
  46. Mol Neurobiol. 2018 Mar;55(3):2362-2383 - PubMed
  47. J Neurosci. 2011 Aug 24;31(34):12059-67 - PubMed
  48. Indian J Crit Care Med. 2014 Nov;18(11):735-45 - PubMed
  49. Cold Spring Harb Perspect Biol. 2012 Nov 01;4(11): - PubMed
  50. Aquat Toxicol. 2021 Aug;237:105882 - PubMed
  51. Toxicol Lett. 2013 Apr 26;218(3):235-45 - PubMed
  52. Toxicology. 2015 Oct 2;336:17-25 - PubMed
  53. Arch Toxicol. 2015 Jun;89(6):867-82 - PubMed
  54. Toxicol Appl Pharmacol. 2012 Sep 1;263(2):148-62 - PubMed
  55. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12764-9 - PubMed
  56. PLoS One. 2019 Feb 22;14(2):e0212749 - PubMed
  57. Brain Res. 2015 Aug 27;1618:136-48 - PubMed
  58. Gene Expr Patterns. 2006 Oct;6(8):1019-26 - PubMed
  59. Toxicology. 2017 Apr 15;381:39-50 - PubMed
  60. J Immunotoxicol. 2020 Dec;17(1):186-193 - PubMed
  61. Neurochem Res. 2015 Sep;40(9):1929-44 - PubMed
  62. J Neurosci. 2005 Jul 13;25(28):6621-30 - PubMed
  63. FEBS Open Bio. 2015 May 08;5:437-44 - PubMed
  64. Mol Brain. 2019 Nov 21;12(1):96 - PubMed
  65. Neuropharmacology. 2016 Jun;105:270-284 - PubMed

Publication Types

Grant support