Display options
Share it on

J Vis Exp. 2021 Aug 05;(174). doi: 10.3791/62743.

Digital Hybrid Model Preparation for Virtual Planning of Reconstructive Dentoalveolar Surgical Procedures.

Journal of visualized experiments : JoVE

Daniel Palkovics, Eleonora Solyom, Balint Molnar, Csaba Pinter, Peter Windisch

Affiliations

  1. Department of Periodontology, Semmelweis University; [email protected].
  2. Department of Periodontology, Semmelweis University.
  3. Empresa de Base Tecnológica Internacional de Canarias, S.L. (EBATINCA).

PMID: 34424231 DOI: 10.3791/62743

Abstract

Virtual, hybrid three-dimensional (3D) model acquisition is presented in this article, utilizing the sequence of radiographic image segmentation, spatial registration, and free-form surface modeling. Firstly cone-beam computed tomography datasets were reconstructed with a semi-automatic segmentation method. Alveolar bone and teeth are separated into different segments, allowing 3D morphology, and localization of periodontal intrabony defects to be assessed. The severity, extent, and morphology of acute and chronic alveolar ridge defects are validated concerning adjacent teeth. On virtual complex tissue models, positions of dental implants can be planned in 3D. Utilizing spatial registration of IOS and CBCT data and subsequent free-form surface modeling, realistic 3D hybrid models can be acquired, visualizing alveolar bone, teeth, and soft tissues. With the superimposition of IOS and CBCT soft tissue, thickness above the edentulous ridge can be assessed about the underlying bone dimensions; therefore, flap design and surgical flap management can be determined, and occasional complications may be avoided.

MeSH terms

Publication Types