Display options
Share it on

Drug Dev Res. 2021 Aug 23; doi: 10.1002/ddr.21866. Epub 2021 Aug 23.

Effective and transient mapping of protein-protein interactions: Application of novel releasable photoaffinity linkers.

Drug development research

Jin Wang, Yuexiang Ma, Jing Li, Qingqing Zhang, Xiaoyan Pan, Wen Lu, Jie Zhang

Affiliations

  1. School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.

PMID: 34424555 DOI: 10.1002/ddr.21866

Abstract

Herein, two novel multifunctional releasable photoaffinity linkers were developed for effective and transient tracking interacting proteins with the overall objective of understanding their in vivo biological functions in real-time. These linkers could be used for the chemical modification of protein under moderate experimental conditions to form protein photoaffinity probes. These probes incorporated with both photoaffinity labels and tag-transfer, enable photo-crosslinking of bait proteins along with the release of unrelated groups. These photoaffinity linkers can be utilized to construct probes for disease markers, which could enable rapid diagnosis in a clinical setting at minimal interference with normal physiology.

© 2021 Wiley Periodicals LLC.

Keywords: effective and transient mapping; protein-protein interactions; releasable photoaffinity linkers

References

  1. Barnard, A., Posocco, P., & Fermeglia, M. (2014). Double-degradable responsive self-assembled multivalent arrays - temporary nanoscale recognition between dendrons and DNA. Organic & Biomolecular Chemistry, 12, 446-455. https://doi.org/10.1039/C3OB42202J - PubMed
  2. Beck, D. B., Narendra, V., Drury, W. J., Casey, R., Jansen, P. W. T. C., Yuan, Z.-F., Garcia, B. A., Vermeulen, M., & Bonasio, R. (2014). In Vivo Proximity Labeling for the Detection of Protein-Protein and Protein-RNA Interactions. Journal of Proteome Research, 13(12), 6135-6143. https://doi.org/10.1021/pr500196b - PubMed
  3. Chang, T.-C., Lai, C.-H., Chien, C.-W., Liang, C.-F., Adak, A. K., Chuang, Y.-J., Chen, Y.-J., & Lin, C.-C. (2013). Synthesis and Evaluation of a Photoactive Probe with a Multivalent Carbohydrate for Capturing Carbohydrate-Lectin Interactions. Bioconjugate Chemistry, 24(11), 1895-1906. https://doi.org/10.1021/bc400306g - PubMed
  4. Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12, 1576-1590. https://doi.org/10.1002/pmic.201100523 - PubMed
  5. He, D., Xie, X., Yang, F., Zhang, Z., Su, H., Ge, Y., Song, H., & Chen, P. (2017). Quantitative and comparative profiling of protease substrates through a genetically encoded multifunctional photocrosslinker. Angewandte Chemie-International Edition, 56, 14521-14525. https://doi.org/10.1002/anie.201708151 - PubMed
  6. Horne, J., Walko, M., & Calabrese, A. (2018). Rapid mapping of protein interactions using tag-transfer Photocrosslinkers. Angewandte Chemie-International Edition, 57, 16688-16692. https://doi.org/10.1002/anie.201809149 - PubMed
  7. Kita M., Hirayama Y., Yamagishi K., Yoneda K., Fujisawa R., Kigoshi H. (2012). Interactions of the Antitumor Macrolide Aplyronine A with Actin and Actin-Related Proteins Established by Its Versatile Photoaffinity Derivatives. Journal of the American Chemical Society, 134(50), 20314-20317. https://doi.org/10.1021/ja310495p - PubMed
  8. Liang, J. (2017). Chemical synthesis of Diubiquitin-based Photoaffinity probes for selectively profiling ubiquitin-binding proteins. Angewandte Chemie-International Edition, 56, 2744-2748. https://doi.org/10.1002/ange.201611659 - PubMed
  9. Lowder, M., Appelbaum, J., & Hobert, E. (2011). Visualizing protein partnerships in living cells and organisms. Current Opinion in Chemical Biology, 15, 781-788. https://doi.org/10.1016/j.cbpa.2011.10.024 - PubMed
  10. Ma, Y., Chen, Q., Pan, X., & Zhang, J. (2021). Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis. Topics in Current Chemistry, 379(2). https://doi.org/10.1007/s41061-020-00323-5 - PubMed
  11. Nguyen, H. N. (2017). Design and decoration of heparin on porous nanosilica via reversible disulfide linkages for controlled drug release. Journal of IKEEE, 21, 320-330. https://doi.org/10.7471/ikeee.2017.21.3.320 - PubMed
  12. Ni, D., Lu, S., & Zhang, J. (2019). Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Medicinal Research Reviews, 39(2019), 2314-2342. https://doi.org/10.1002/med.21585 - PubMed
  13. Pan, X., Liang, L., Sun, Y., Si, R., Zhang, Q., Wang, J., Fu, J., Zhang, J., Zhang, J. (2019). Discovery of novel Bcr-AblT315I inhibitors with flexible linker. Part 1: Confirmation optimization of phenyl-1H-indazol-3-amine as hinge binding moiety. European Journal of Medicinal Chemistry, 178, 232-242. https://doi.org/10.1016/j.ejmech.2019.05.091 - PubMed
  14. Peng, T., Hang, H. C. (2015). Bifunctional Fatty Acid Chemical Reporter for Analyzing S-Palmitoylated Membrane Protein-Protein Interactions in Mammalian Cells. Journal of the American Chemical Society, 137(2), 556-559. https://doi.org/10.1021/ja502109n - PubMed
  15. Pham, N. D, Parker, R. B, Kohler, J. J. (2013). Photocrosslinking approaches to interactome mapping. Current Opinion in Chemical Biology, 17(1), 90-101. https://doi.org/10.1016/j.cbpa.2012.10.034 - PubMed
  16. Schubert, O. T., Röst, H. L., Collins, B. C., Rosenberger, G., & Aebersold, R. (2017). Quantitative proteomics: Challenges and opportunities in basic and applied research. Nature Protocols, 12, 1289-1294. https://doi.org/10.1038/nprot.2017.040 - PubMed
  17. Shan, Y., Si, R., Wang, J., Zhang, Q., Zhou, H., Song, J., Zhang, J., & Chen, Q. (2019). Discovery of novel anti-angiogenesis agents. Part 9: Multiplex inhibitors suppressing compensatory activations of RTKs. European Journal of Medicinal Chemistry, 164, 440-447. https://doi.org/10.1016/j.ejmech.2018.12.067 - PubMed
  18. Shan, Y., Si, R., Wang, J., Zhang, Q., Li, J., Ma, Y., & Zhang, J. (2020). Discovery of novel anti-angiogenesis agents. Part 11: Development of PROTACs based on active molecules with potency of promoting vascular normalization. European Journal of Medicinal Chemistry, 205, 112654. https://doi.org/10.1016/j.ejmech.2020.112654 - PubMed
  19. Shan, Y., Wang, J., Si, R., Ma, Y., Li, J., Zhang, Q., Lu, W., & Zhang, J. (2021). Exploring the potential intracellular targets of vascular normalization based on active candidates. Bioorganic Chemistry, 108, 104551. https://doi.org/10.1016/j.bioorg.2020.104551 - PubMed
  20. Sinz A. (2010). Investigation of protein-protein interactions in living cells by chemical crosslinking and mass spectrometry. Analytical and Bioanalytical Chemistry, 397(8), 3433-3440. https://doi.org/10.1007/s00216-009-3405-5 - PubMed
  21. Wang, J., Chen, Qi., Shan, Y., Pan, X., & Zhang, J. (2019). Activity-based proteomic profiling: The application of photoaffinity probes in the target identification of bioactive molecules. TrAC Trends in Analytical Chemistry, 115, 110-120. https://doi.org/10.1016/j.trac.2019.03.028 - PubMed
  22. Wang, J., Chen, Q., Shan, Y., Pan, X., & Zhang, J. (2020). Activity-based proteomic profiling: application of releasable linker in photoaffinity probes. Drug Discovery Today, 25(1), 133-140. https://doi.org/10.1016/j.drudis.2019.10.016 - PubMed
  23. Winnacker, M., Breeger, S., & Strasser, R. (2009). Novel diazirine containing DNA photoaffinity probes for the investigation of DNA-protein-interactions. ChemBioChem, 10, 109-118. https://doi.org/10.1002/cbic.200800397 - PubMed
  24. Wollrab, V., Caballero, D., Thiagarajan, R., & Riveline, D. (2016). Ordering Single Cells and Single Embryos in 3D Confinement: A New Device for High Content Screening. Journal of Visualized Experiments, (115). https://doi.org/10.3791/51880 - PubMed
  25. Zhang, L.-J., Wu, B., Zhou, W., Wang, C.-X., Wang, Q., Yu, H., Zhuo, R.-X., Liu, Z.-L., & Huang, S.-W. (2017). Two-component reduction-sensitive lipid-polymer hybrid nanoparticles for triggered drug release and enhanced in vitro and in vivo anti-tumor efficacy. Biomaterials Science, 5(1), 98-110. https://doi.org/10.1039/c6bm00662k - PubMed

Publication Types

Grant support