Display options
Share it on

Nanomaterials (Basel). 2021 Jul 02;11(7). doi: 10.3390/nano11071745.

Cyanine-5-Driven Behaviours of Hyperbranched Polymers Designed for Therapeutic Delivery Are Cell-Type Specific and Correlated with Polar Lipid Distribution in Membranes.

Nanomaterials (Basel, Switzerland)

Joshua D Simpson, Denni L Currin-Ross, Gayathri R Ediriweera, Horst Joachim Schirra, Nicholas L Fletcher, Craig A Bell, Maria C Arno, Kristofer J Thurecht

Affiliations

  1. Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia.
  2. ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, St. Lucia, QLD 4072, Australia.
  3. Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia.
  4. School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
  5. Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
  6. School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
  7. Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

PMID: 34361131 PMCID: PMC8308131 DOI: 10.3390/nano11071745

Abstract

The ability to predict the behaviour of polymeric nanomedicines can often be obfuscated by subtle modifications to the corona structure, such as incorporation of fluorophores or other entities. However, these interactions provide an intriguing insight into how selection of molecular components in multifunctional nanomedicines contributes to the overall biological fate of such materials. Here, we detail the internalisation behaviours of polymeric nanomedicines across a suite of cell types and extrapolate data for distinguishing the underlying mechanics of cyanine-5-driven interactions as they pertain to uptake and endosomal escape. By correlating the variance of rate kinetics with endosomal escape efficiency and endogenous lipid polarity, we identify that observed cell-type dependencies correspond with an underlying susceptibility to dye-mediated effects and nanomedicine accumulation within polar vesicles. Further, our results infer that the ability to translocate endosomal membranes may be improved in certain cell types, suggesting a potential role for diagnostic moieties in trafficking of drug-loaded nanocarriers.

Keywords: cellular uptake; endosomal escape; fluorescence; materials design; nanomedicine; polymers; trafficking

References

  1. Macromol Rapid Commun. 2020 Sep;41(18):e2000319 - PubMed
  2. Adv Healthc Mater. 2018 Jan;7(1): - PubMed
  3. Bioconjug Chem. 2019 Feb 20;30(2):263-272 - PubMed
  4. Chem Sci. 2020 Mar 6;11(12):3268-3280 - PubMed
  5. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Sep;9(5): - PubMed
  6. Nat Nanotechnol. 2018 Sep;13(9):777-785 - PubMed
  7. Nanotheranostics. 2018 Aug 24;2(4):360-370 - PubMed
  8. Pharm Res. 2016 Oct;33(10):2373-87 - PubMed
  9. ACS Chem Biol. 2019 Sep 20;14(9):2071-2087 - PubMed
  10. Chem Commun (Camb). 2018 Oct 11;54(82):11538-11541 - PubMed
  11. Acta Biomater. 2016 Jan;29:94-102 - PubMed
  12. Nat Rev Cancer. 2017 Jan;17(1):20-37 - PubMed
  13. Biomater Sci. 2019 Nov 1;7(11):4661-4674 - PubMed
  14. Nat Biotechnol. 2013 Jul;31(7):638-46 - PubMed
  15. Sci Rep. 2015 Jun 10;5:11298 - PubMed
  16. J Genet Genomics. 2020 Feb 20;47(2):69-83 - PubMed
  17. PLoS One. 2014 Feb 04;9(2):e87649 - PubMed
  18. Nanomedicine. 2015 Nov;11(8):1893-907 - PubMed
  19. Sci Rep. 2019 Feb 27;9(1):2913 - PubMed
  20. Environ Toxicol Chem. 2014 Mar;33(3):481-92 - PubMed
  21. ACS Appl Mater Interfaces. 2019 Aug 28;11(34):31302-31310 - PubMed
  22. Nano Lett. 2013 Mar 13;13(3):1047-52 - PubMed
  23. Polymers (Basel). 2019 Sep 02;11(9): - PubMed
  24. Bioconjug Chem. 2020 Sep 16;31(9):2060-2071 - PubMed
  25. J Control Release. 2017 Oct 10;263:211-222 - PubMed
  26. Chem Commun (Camb). 2018 Nov 13;54(91):12787-12803 - PubMed
  27. Soft Matter. 2015 Apr 21;11(15):2993-3002 - PubMed
  28. Biomaterials. 2017 Oct;141:330-339 - PubMed
  29. Nanomedicine. 2017 Feb;13(2):471-482 - PubMed
  30. Adv Drug Deliv Rev. 2014 Feb;66:26-41 - PubMed
  31. Bioconjug Chem. 2015 Feb 18;26(2):304-15 - PubMed

Publication Types

Grant support